Calculating Charge on Capacitors in a Two-Way Switch Circuit

AI Thread Summary
In a two-way switch circuit with a 15V battery and two capacitors, the charge on the 1µF capacitor is initially calculated as 15mC when the switch is in one position. Upon switching, the charge changes to 10mC due to the interaction with the second capacitor. The discussion emphasizes that the total charge remains conserved, and the voltage across both capacitors must equalize. It is clarified that the battery can be neglected after the switch is flipped, as the circuit becomes open. The problem-solving approach involves using the ratios of capacitance values to determine the final charge distribution.
Sekonda
Messages
201
Reaction score
0

Homework Statement


A battery of 15V supplies two capacitors via a two-way switch. Initially the switch is to the left hand side, calculate the charge on the 1mf capacitor when the switch is switched to the other side (as shown in diagram).


Homework Equations


Q=VC, Total Capacitance in Parallel = C1 + C2 + C3 etc., 1/Total capacitance in series = 1/c1 + 1/c2 + 1/c3 etc.


http://img15.imageshack.us/img15/7147/capacitors.png
 
Last edited by a moderator:
Physics news on Phys.org
There's only one connected capacitor when the switch is on the left side.
 
Initially the 1mf capacitor has 15mc which I understand but once the switch is flipped it loses 5mC to have only 10mC quantity of charge. I'm also having trouble of thinking the problem through, once the switch is flipped the capacitors are in series? as the battery can be neglected due to broken circuit?

Anyways an mathematical explanation as well as a qualitative one would be most appreciated.
Thanks!
 
Yeah when the switch is on the left hand side only one capacitor, the 1mf capacitor, so the process I used to find the charge initially was Q=VC, 15x(1x10^-3) = 15mC.
 
Who cares about whether the capacitors are in series or not. You know that total charge can't change, and that the voltage across both capacitors have to be equal. You can write 2 equations with these facts and solve for Q1 and Q2.
 
You're absolutely correct, I for some reason kept thinking the battery would continue to function but it can be neglected and the 1mf capacitor would begin to discharge to reach an equilibrium with the 0.5mf capacitor.

But like you said the initial charge cannot change and so is conserved and then ratio's of the capacitance values will give the ratio to which the charge is deposited.

I was overcomplicating the problem and not thinking about my 'definitions' correctly.

Thanks again.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top