- #1
- 16
- 0
Hi There. Was working on these and I think I managed to get most of them but still have a few niggling parts. I've managed to do questions 2,3,3Part2 and I've shown my working out so I'd be greatful if you could verify whether they are correct.
Please could you also guide me on Q1 & 4.
Q1: Suppose that f(z) = u(x,y) + iv(x,y) is holomorphic on a domain D, and that |f(z)| = constant throughout D. Show that f(z) = constant aswell.
I realize this has something to do with the Cauchy Riemann equations but I can't quite apply it to this question. Any hints would be greatly appreciated.
----------------------------------------------------------------------------------------
Q2:
[itex]
\begin{gathered}
{\text{Using sum formula for cosine, write the taylor expansion of cos z centred at z}}_{\text{0}} {\text{, where z}}_0 {\text{ is a point in }}\mathbb{C}{\text{.}} \hfill \\
{\text{Sum formula for cosine: }}\sum\limits_{n = 0}^\infty {( - 1)^n } \frac{{z^{2n} }}
{{(2n)!}}. \hfill \\
{\text{cos(z) : (z - z}}_{\text{0}} ){\text{ - }}\frac{{(z - z_0 )^2 }}
{{2!}}{\text{ + }}\frac{{(z - z_0 )^4 }}
{{4!}}{\text{ - }}\frac{{(z - z_0 )^6 }}
{{6!}}... \hfill \\
{\text{Is this correct?}} \hfill \\
\end{gathered}
\]
[/itex]
----------------------------------------------------------------------------------------
Q3:
[itex]
\begin{gathered}
{\text{Prove: }}\frac{d}
{{dz}}\sin z = \cos z \hfill \\
{\text{We know the definition of a derivative of a function f at z}} \in \mathbb{C}{\text{ is: f'(z) = }}\mathop {\lim }\limits_{h \to 0} \left[ {\frac{{f(z + h) - f(z)}}
{h}} \right]. \hfill \\
{\text{Using the sine angle rule: sin(z + h) = sin(z)cos(h) + cos(z)sin(h)}}{\text{. So }}\frac{{\sin (z + h){\text{ }} - {\text{ }}\sin (z)}}
{h}{\text{ }} = {\text{ }}\frac{{\sin (z)\cos (h){\text{ }} + {\text{ }}\cos (z)\sin (h){\text{ }} - {\text{ }}\sin (z)}}
{h}{\text{ = }} \hfill \\
\frac{{{\text{sin}}\left( {\text{z}} \right)\left( {{\text{cos}}\left( {\text{h}} \right){\text{ }} - {\text{ 1}}} \right){\text{ }} + {\text{ cos}}\left( {\text{z}} \right){\text{sin}}\left( {\text{h}} \right)}}
{h}{\text{ = sin(z)}}\left[ {\frac{{\cos (h) - 1}}
{h}} \right]{\text{ + cos(z)}}\left[ {\frac{{\sin (h)}}
{h}} \right]. \hfill \\
{\text{So now computing the derivative:}} \hfill \\
\frac{d}
{{dz}}\sin z{\text{ }} = {\text{ sin(z)}}\left[ {{\text{ }}\mathop {\lim }\limits_{h \to 0} \left[ {\frac{{\cos (h) - 1}}
{h}} \right]} \right]{\text{ + cos(z)}}\left[ {{\text{ }}\mathop {\lim }\limits_{h \to 0} \left[ {\frac{{\sin (h)}}
{h}} \right]} \right]{\text{ = sin(z)(0) + cos(z)(1) = 0 + cos(z) = cos(z)}}{\text{.}} \hfill \\
{\text{Is this correct?}} \hfill \\
\end{gathered} [/itex]
----------------------------------------------------------------------------------------
Q3, Part 2:
[itex]
\begin{gathered}
{\text{Prove: }}\frac{d}
{{dz}}\cos z = - \sin z \hfill \\
{\text{We know the definition of a derivative of a function f at z}}\varepsilon \mathbb{C}{\text{ is: f'(z) = }}\mathop {\lim }\limits_{h \to 0} \left[ {\frac{{f(z + h) - f(z)}}
{h}} \right]. \hfill \\
{\text{Using the sine angle rule: cos(z + h) = cos(z)cos(h) - sin(z)sin(h)}}{\text{. So }}\frac{{\cos (z + h){\text{ }} - {\text{ }}\cos (z)}}
{h}{\text{ }} = {\text{ }}\frac{{{\text{cos(z)cos(h) - sin(z)sin(h) }} - {\text{ }}\cos (z)}}
{h}{\text{ = }} \hfill \\
\frac{{{\text{cos}}\left( {\text{z}} \right)\left( {{\text{cos}}\left( {\text{h}} \right){\text{ }} - {\text{ 1}}} \right){\text{ }} - {\text{ sin}}\left( {\text{z}} \right){\text{sin}}\left( {\text{h}} \right)}}
{h}{\text{ = cos(z)}}\left[ {\frac{{\cos (h) - 1}}
{h}} \right]{\text{ - sin(z)}}\left[ {\frac{{\sin (h)}}
{h}} \right]. \hfill \\
{\text{So now computing the derivative:}} \hfill \\
\frac{d}
{{dz}}\cos z{\text{ }} = {\text{ cos(z)}}\left[ {{\text{ }}\mathop {\lim }\limits_{h \to 0} \left[ {\frac{{\cos (h) - 1}}
{h}} \right]} \right]{\text{ - sin(z)}}\left[ {{\text{ }}\mathop {\lim }\limits_{h \to 0} \left[ {\frac{{\sin (h)}}
{h}} \right]} \right]{\text{ = cos(z)(0) - sin(z)(1) = 0 - sin(z) = - sin(z)}}{\text{.}} \hfill \\
{\text{Is this correct?}} \hfill \\
\end{gathered}
[/itex]
----------------------------------------------------------------------------------------
Q4:
Prove [itex]sin^2z + cos^2z = 1 [/itex] for all [itex]{\text{z}} \in \mathbb{C}.[/itex]
No idea on this one. Please could you give me a hint.
Please could you also guide me on Q1 & 4.
Q1: Suppose that f(z) = u(x,y) + iv(x,y) is holomorphic on a domain D, and that |f(z)| = constant throughout D. Show that f(z) = constant aswell.
I realize this has something to do with the Cauchy Riemann equations but I can't quite apply it to this question. Any hints would be greatly appreciated.
----------------------------------------------------------------------------------------
Q2:
[itex]
\begin{gathered}
{\text{Using sum formula for cosine, write the taylor expansion of cos z centred at z}}_{\text{0}} {\text{, where z}}_0 {\text{ is a point in }}\mathbb{C}{\text{.}} \hfill \\
{\text{Sum formula for cosine: }}\sum\limits_{n = 0}^\infty {( - 1)^n } \frac{{z^{2n} }}
{{(2n)!}}. \hfill \\
{\text{cos(z) : (z - z}}_{\text{0}} ){\text{ - }}\frac{{(z - z_0 )^2 }}
{{2!}}{\text{ + }}\frac{{(z - z_0 )^4 }}
{{4!}}{\text{ - }}\frac{{(z - z_0 )^6 }}
{{6!}}... \hfill \\
{\text{Is this correct?}} \hfill \\
\end{gathered}
\]
[/itex]
----------------------------------------------------------------------------------------
Q3:
[itex]
\begin{gathered}
{\text{Prove: }}\frac{d}
{{dz}}\sin z = \cos z \hfill \\
{\text{We know the definition of a derivative of a function f at z}} \in \mathbb{C}{\text{ is: f'(z) = }}\mathop {\lim }\limits_{h \to 0} \left[ {\frac{{f(z + h) - f(z)}}
{h}} \right]. \hfill \\
{\text{Using the sine angle rule: sin(z + h) = sin(z)cos(h) + cos(z)sin(h)}}{\text{. So }}\frac{{\sin (z + h){\text{ }} - {\text{ }}\sin (z)}}
{h}{\text{ }} = {\text{ }}\frac{{\sin (z)\cos (h){\text{ }} + {\text{ }}\cos (z)\sin (h){\text{ }} - {\text{ }}\sin (z)}}
{h}{\text{ = }} \hfill \\
\frac{{{\text{sin}}\left( {\text{z}} \right)\left( {{\text{cos}}\left( {\text{h}} \right){\text{ }} - {\text{ 1}}} \right){\text{ }} + {\text{ cos}}\left( {\text{z}} \right){\text{sin}}\left( {\text{h}} \right)}}
{h}{\text{ = sin(z)}}\left[ {\frac{{\cos (h) - 1}}
{h}} \right]{\text{ + cos(z)}}\left[ {\frac{{\sin (h)}}
{h}} \right]. \hfill \\
{\text{So now computing the derivative:}} \hfill \\
\frac{d}
{{dz}}\sin z{\text{ }} = {\text{ sin(z)}}\left[ {{\text{ }}\mathop {\lim }\limits_{h \to 0} \left[ {\frac{{\cos (h) - 1}}
{h}} \right]} \right]{\text{ + cos(z)}}\left[ {{\text{ }}\mathop {\lim }\limits_{h \to 0} \left[ {\frac{{\sin (h)}}
{h}} \right]} \right]{\text{ = sin(z)(0) + cos(z)(1) = 0 + cos(z) = cos(z)}}{\text{.}} \hfill \\
{\text{Is this correct?}} \hfill \\
\end{gathered} [/itex]
----------------------------------------------------------------------------------------
Q3, Part 2:
[itex]
\begin{gathered}
{\text{Prove: }}\frac{d}
{{dz}}\cos z = - \sin z \hfill \\
{\text{We know the definition of a derivative of a function f at z}}\varepsilon \mathbb{C}{\text{ is: f'(z) = }}\mathop {\lim }\limits_{h \to 0} \left[ {\frac{{f(z + h) - f(z)}}
{h}} \right]. \hfill \\
{\text{Using the sine angle rule: cos(z + h) = cos(z)cos(h) - sin(z)sin(h)}}{\text{. So }}\frac{{\cos (z + h){\text{ }} - {\text{ }}\cos (z)}}
{h}{\text{ }} = {\text{ }}\frac{{{\text{cos(z)cos(h) - sin(z)sin(h) }} - {\text{ }}\cos (z)}}
{h}{\text{ = }} \hfill \\
\frac{{{\text{cos}}\left( {\text{z}} \right)\left( {{\text{cos}}\left( {\text{h}} \right){\text{ }} - {\text{ 1}}} \right){\text{ }} - {\text{ sin}}\left( {\text{z}} \right){\text{sin}}\left( {\text{h}} \right)}}
{h}{\text{ = cos(z)}}\left[ {\frac{{\cos (h) - 1}}
{h}} \right]{\text{ - sin(z)}}\left[ {\frac{{\sin (h)}}
{h}} \right]. \hfill \\
{\text{So now computing the derivative:}} \hfill \\
\frac{d}
{{dz}}\cos z{\text{ }} = {\text{ cos(z)}}\left[ {{\text{ }}\mathop {\lim }\limits_{h \to 0} \left[ {\frac{{\cos (h) - 1}}
{h}} \right]} \right]{\text{ - sin(z)}}\left[ {{\text{ }}\mathop {\lim }\limits_{h \to 0} \left[ {\frac{{\sin (h)}}
{h}} \right]} \right]{\text{ = cos(z)(0) - sin(z)(1) = 0 - sin(z) = - sin(z)}}{\text{.}} \hfill \\
{\text{Is this correct?}} \hfill \\
\end{gathered}
[/itex]
----------------------------------------------------------------------------------------
Q4:
Prove [itex]sin^2z + cos^2z = 1 [/itex] for all [itex]{\text{z}} \in \mathbb{C}.[/itex]
No idea on this one. Please could you give me a hint.