Cauchy Riemann & Taylor Expansion.

In summary: Q3: ----------------------------------------------------------------------------------------Prove: \frac{d}{dz}\sin z = \cos z We know the definition of a derivative of a function f at z ∈ C is: f'(z) = lim(h -> 0)((f(z + h) - f(z))/h). Using the sine angle rule, sin(z + h) = sin(z)cos(h) + cos(z)sin(h). So (sin(z + h) - sin(z))/h = (sin(z)cos(h) + cos(z)sin(h) - sin(z))/h = sin(z)((cos(h) - 1)/h) + cos(z)(sin(h)/h) = sin(z)[lim(h
  • #1
mathfied
16
0
Hi There. Was working on these and I think I managed to get most of them but still have a few niggling parts. I've managed to do questions 2,3,3Part2 and I've shown my working out so I'd be greatful if you could verify whether they are correct.
Please could you also guide me on Q1 & 4. Q1: Suppose that f(z) = u(x,y) + iv(x,y) is holomorphic on a domain D, and that |f(z)| = constant throughout D. Show that f(z) = constant aswell.

I realize this has something to do with the Cauchy Riemann equations but I can't quite apply it to this question. Any hints would be greatly appreciated.
----------------------------------------------------------------------------------------
Q2:
[itex]
\begin{gathered}
{\text{Using sum formula for cosine, write the taylor expansion of cos z centred at z}}_{\text{0}} {\text{, where z}}_0 {\text{ is a point in }}\mathbb{C}{\text{.}} \hfill \\
{\text{Sum formula for cosine: }}\sum\limits_{n = 0}^\infty {( - 1)^n } \frac{{z^{2n} }}
{{(2n)!}}. \hfill \\
{\text{cos(z) : (z - z}}_{\text{0}} ){\text{ - }}\frac{{(z - z_0 )^2 }}
{{2!}}{\text{ + }}\frac{{(z - z_0 )^4 }}
{{4!}}{\text{ - }}\frac{{(z - z_0 )^6 }}
{{6!}}... \hfill \\
{\text{Is this correct?}} \hfill \\
\end{gathered}
\]
[/itex]

----------------------------------------------------------------------------------------
Q3:

[itex]
\begin{gathered}
{\text{Prove: }}\frac{d}
{{dz}}\sin z = \cos z \hfill \\
{\text{We know the definition of a derivative of a function f at z}} \in \mathbb{C}{\text{ is: f'(z) = }}\mathop {\lim }\limits_{h \to 0} \left[ {\frac{{f(z + h) - f(z)}}
{h}} \right]. \hfill \\
{\text{Using the sine angle rule: sin(z + h) = sin(z)cos(h) + cos(z)sin(h)}}{\text{. So }}\frac{{\sin (z + h){\text{ }} - {\text{ }}\sin (z)}}
{h}{\text{ }} = {\text{ }}\frac{{\sin (z)\cos (h){\text{ }} + {\text{ }}\cos (z)\sin (h){\text{ }} - {\text{ }}\sin (z)}}
{h}{\text{ = }} \hfill \\
\frac{{{\text{sin}}\left( {\text{z}} \right)\left( {{\text{cos}}\left( {\text{h}} \right){\text{ }} - {\text{ 1}}} \right){\text{ }} + {\text{ cos}}\left( {\text{z}} \right){\text{sin}}\left( {\text{h}} \right)}}
{h}{\text{ = sin(z)}}\left[ {\frac{{\cos (h) - 1}}
{h}} \right]{\text{ + cos(z)}}\left[ {\frac{{\sin (h)}}
{h}} \right]. \hfill \\
{\text{So now computing the derivative:}} \hfill \\
\frac{d}
{{dz}}\sin z{\text{ }} = {\text{ sin(z)}}\left[ {{\text{ }}\mathop {\lim }\limits_{h \to 0} \left[ {\frac{{\cos (h) - 1}}
{h}} \right]} \right]{\text{ + cos(z)}}\left[ {{\text{ }}\mathop {\lim }\limits_{h \to 0} \left[ {\frac{{\sin (h)}}
{h}} \right]} \right]{\text{ = sin(z)(0) + cos(z)(1) = 0 + cos(z) = cos(z)}}{\text{.}} \hfill \\
{\text{Is this correct?}} \hfill \\
\end{gathered} [/itex]

----------------------------------------------------------------------------------------
Q3, Part 2:

[itex]
\begin{gathered}
{\text{Prove: }}\frac{d}
{{dz}}\cos z = - \sin z \hfill \\
{\text{We know the definition of a derivative of a function f at z}}\varepsilon \mathbb{C}{\text{ is: f'(z) = }}\mathop {\lim }\limits_{h \to 0} \left[ {\frac{{f(z + h) - f(z)}}
{h}} \right]. \hfill \\
{\text{Using the sine angle rule: cos(z + h) = cos(z)cos(h) - sin(z)sin(h)}}{\text{. So }}\frac{{\cos (z + h){\text{ }} - {\text{ }}\cos (z)}}
{h}{\text{ }} = {\text{ }}\frac{{{\text{cos(z)cos(h) - sin(z)sin(h) }} - {\text{ }}\cos (z)}}
{h}{\text{ = }} \hfill \\
\frac{{{\text{cos}}\left( {\text{z}} \right)\left( {{\text{cos}}\left( {\text{h}} \right){\text{ }} - {\text{ 1}}} \right){\text{ }} - {\text{ sin}}\left( {\text{z}} \right){\text{sin}}\left( {\text{h}} \right)}}
{h}{\text{ = cos(z)}}\left[ {\frac{{\cos (h) - 1}}
{h}} \right]{\text{ - sin(z)}}\left[ {\frac{{\sin (h)}}
{h}} \right]. \hfill \\
{\text{So now computing the derivative:}} \hfill \\
\frac{d}
{{dz}}\cos z{\text{ }} = {\text{ cos(z)}}\left[ {{\text{ }}\mathop {\lim }\limits_{h \to 0} \left[ {\frac{{\cos (h) - 1}}
{h}} \right]} \right]{\text{ - sin(z)}}\left[ {{\text{ }}\mathop {\lim }\limits_{h \to 0} \left[ {\frac{{\sin (h)}}
{h}} \right]} \right]{\text{ = cos(z)(0) - sin(z)(1) = 0 - sin(z) = - sin(z)}}{\text{.}} \hfill \\
{\text{Is this correct?}} \hfill \\
\end{gathered}
[/itex]

----------------------------------------------------------------------------------------
Q4:

Prove [itex]sin^2z + cos^2z = 1 [/itex] for all [itex]{\text{z}} \in \mathbb{C}.[/itex]No idea on this one. Please could you give me a hint.
 
Physics news on Phys.org
  • #2
For Q1, if |f(z)| is constant then so is u^2+v^2. Take the partial derivatives of that with respect to x and y and apply Cauchy-Riemann. What do you conclude? For the other ones, it looks like you are trying to prove some trig type identities for sin and cos of a complex argument. So are you allowed to use these trig identities to prove them?? What is your definition of sin(z) and cos(z)? You should probably start with that. If you ARE allowed to use the identities you are using, that makes Q4 really easy. Use an identity on cos(z-z).
 
  • #3
mathfied said:
Hi There. Was working on these and I think I managed to get most of them but still have a few niggling parts. I've managed to do questions 2,3,3Part2 and I've shown my working out so I'd be greatful if you could verify whether they are correct.
Please could you also guide me on Q1 & 4.


Q1: Suppose that f(z) = u(x,y) + iv(x,y) is holomorphic on a domain D, and that |f(z)| = constant throughout D. Show that f(z) = constant aswell.

I realize this has something to do with the Cauchy Riemann equations but I can't quite apply it to this question. Any hints would be greatly appreciated.
Q2:
----------------------------------------------------------------------------------------
? That's not true. f(z)= z2 is holomorphic on the entire complex plane but is NOT constant. Are there other conditions on f? For example if f is holomorphic on the entire complex plane and bounded then it is a constant.

[itex]
\begin{gathered}
{\text{Using sum formula for cosine, write the taylor expansion of cos z centred at z}}_{\text{0}} {\text{, where z}}_0 {\text{ is a point in }}\mathbb{C}{\text{.}} \hfill \\
{\text{Sum formula for cosine: }}\sum\limits_{n = 0}^\infty {( - 1)^n } \frac{{z^{2n} }}
{{(2n)!}}. \hfill \\
{\text{cos(z) : (z - z}}_{\text{0}} ){\text{ - }}\frac{{(z - z_0 )^2 }}
{{2!}}{\text{ + }}\frac{{(z - z_0 )^4 }}
{{4!}}{\text{ - }}\frac{{(z - z_0 )^6 }}
{{6!}}... \hfill \\
{\text{Is this correct?}} \hfill \\
\end{gathered}
\]
[/itex]
Yes, those are the first four terms of the sequence. Can you write the general formula, in the same way you have given the "sum formula"?

----------------------------------------------------------------------------------------
Q3:

[itex]
\begin{gathered}
{\text{Prove: }}\frac{d}
{{dz}}\sin z = \cos z \hfill \\
{\text{We know the definition of a derivative of a function f at z}} \in \mathbb{C}{\text{ is: f'(z) = }}\mathop {\lim }\limits_{h \to 0} \left[ {\frac{{f(z + h) - f(z)}}
{h}} \right]. \hfill \\
{\text{Using the sine angle rule: sin(z + h) = sin(z)cos(h) + cos(z)sin(h)}}{\text{. So }}\frac{{\sin (z + h){\text{ }} - {\text{ }}\sin (z)}}
{h}{\text{ }} = {\text{ }}\frac{{\sin (z)\cos (h){\text{ }} + {\text{ }}\cos (z)\sin (h){\text{ }} - {\text{ }}\sin (z)}}
{h}{\text{ = }} \hfill \\
\frac{{{\text{sin}}\left( {\text{z}} \right)\left( {{\text{cos}}\left( {\text{h}} \right){\text{ }} - {\text{ 1}}} \right){\text{ }} + {\text{ cos}}\left( {\text{z}} \right){\text{sin}}\left( {\text{h}} \right)}}
{h}{\text{ = sin(z)}}\left[ {\frac{{\cos (h) - 1}}
{h}} \right]{\text{ + cos(z)}}\left[ {\frac{{\sin (h)}}
{h}} \right]. \hfill \\
{\text{So now computing the derivative:}} \hfill \\
\frac{d}
{{dz}}\sin z{\text{ }} = {\text{ sin(z)}}\left[ {{\text{ }}\mathop {\lim }\limits_{h \to 0} \left[ {\frac{{\cos (h) - 1}}
{h}} \right]} \right]{\text{ + cos(z)}}\left[ {{\text{ }}\mathop {\lim }\limits_{h \to 0} \left[ {\frac{{\sin (h)}}
{h}} \right]} \right]{\text{ = sin(z)(0) + cos(z)(1) = 0 + cos(z) = cos(z)}}{\text{.}} \hfill \\
{\text{Is this correct?}} \hfill \\
\end{gathered} [/itex]
Can you prove that
[tex]\lim_{h\rightarrow 0}\frac{1- cos(h)}{h}= 0[/tex] and
[tex]\lim_{h\rightarrow 0}\frac{sin(h)}{h}= 1[/tex]
for h complex?

----------------------------------------------------------------------------------------
Q3, Part 2:

[itex]
\begin{gathered}
{\text{Prove: }}\frac{d}
{{dz}}\cos z = - \sin z \hfill \\
{\text{We know the definition of a derivative of a function f at z}}\varepsilon \mathbb{C}{\text{ is: f'(z) = }}\mathop {\lim }\limits_{h \to 0} \left[ {\frac{{f(z + h) - f(z)}}
{h}} \right]. \hfill \\
{\text{Using the sine angle rule: cos(z + h) = cos(z)cos(h) - sin(z)sin(h)}}{\text{. So }}\frac{{\cos (z + h){\text{ }} - {\text{ }}\cos (z)}}
{h}{\text{ }} = {\text{ }}\frac{{{\text{cos(z)cos(h) - sin(z)sin(h) }} - {\text{ }}\cos (z)}}
{h}{\text{ = }} \hfill \\
\frac{{{\text{cos}}\left( {\text{z}} \right)\left( {{\text{cos}}\left( {\text{h}} \right){\text{ }} - {\text{ 1}}} \right){\text{ }} - {\text{ sin}}\left( {\text{z}} \right){\text{sin}}\left( {\text{h}} \right)}}
{h}{\text{ = cos(z)}}\left[ {\frac{{\cos (h) - 1}}
{h}} \right]{\text{ - sin(z)}}\left[ {\frac{{\sin (h)}}
{h}} \right]. \hfill \\
{\text{So now computing the derivative:}} \hfill \\
\frac{d}
{{dz}}\cos z{\text{ }} = {\text{ cos(z)}}\left[ {{\text{ }}\mathop {\lim }\limits_{h \to 0} \left[ {\frac{{\cos (h) - 1}}
{h}} \right]} \right]{\text{ - sin(z)}}\left[ {{\text{ }}\mathop {\lim }\limits_{h \to 0} \left[ {\frac{{\sin (h)}}
{h}} \right]} \right]{\text{ = cos(z)(0) - sin(z)(1) = 0 - sin(z) = - sin(z)}}{\text{.}} \hfill \\
{\text{Is this correct?}} \hfill \\
\end{gathered}
[/itex]
Same comment

----------------------------------------------------------------------------------------
Q4:

Prove [itex]sin^2z + cos^2z = 1 [/itex] for all [itex]{\text{z}} \in \mathbb{C}.[/itex]


No idea on this one. Please could you give me a hint.
Write sin(z) and cos(z) in terms of eiz and e-iz.
 
  • #4
HallsofIvy said:
? That's not true. f(z)= z2 is holomorphic on the entire complex plane but is NOT constant. Are there other conditions on f? For example if f is holomorphic on the entire complex plane and bounded then it is a constant.

Yes, there is another condition on f. |f(z)| is constant.
 
  • #5
HallsofIvy said:
?
[itex]
\begin{gathered}
{\text{Using sum formula for cosine, write the taylor expansion of cos z centred at z}}_{\text{0}} {\text{, where z}}_0 {\text{ is a point in }}\mathbb{C}{\text{.}} \hfill \\
{\text{Sum formula for cosine: }}\sum\limits_{n = 0}^\infty {( - 1)^n } \frac{{z^{2n} }}
{{(2n)!}}. \hfill \\
{\text{cos(z) : (z - z}}_{\text{0}} ){\text{ - }}\frac{{(z - z_0 )^2 }}
{{2!}}{\text{ + }}\frac{{(z - z_0 )^4 }}
{{4!}}{\text{ - }}\frac{{(z - z_0 )^6 }}
{{6!}}... \hfill \\
{\text{Is this correct?}} \hfill \\
\end{gathered}
\]
[/itex]
Yes, those are the first four terms of the sequence. Can you write the general formula, in the same way you have given the "sum formula"?

Yes, the general formula be:

[itex]\sum\limits_{n = 0}^\infty {( - 1)^n } \frac{{(z-z_0)^{2n} }}
{{(2n)!}}[/itex]. So is that it? end of question?------------------------------------------------------------------------
QUESTION 3:
------------------------------------------------------------------------

HallsofIvy said:
Can you prove that
[tex]\lim_{h\rightarrow 0}\frac{1- cos(h)}{h}= 0[/tex] and
[tex]\lim_{h\rightarrow 0}\frac{sin(h)}{h}= 1[/tex]
for h complex?

yes. i would do it like this:
[itex]\mathop {\lim }\limits_{h \to 0} \left[ {\frac{{\cos (h) - 1}}
{h}} \right] = \mathop {\lim }\limits_{h \to 0} \frac{1}
{h}\left[ {\left[ {1 - \frac{{h^2 }}
{{2!}} + \frac{{h^4 }}
{{4!}}...} \right] - 1} \right] = \mathop {\lim }\limits_{h \to 0} \left[ {\left[ {\frac{1}
{h} - \frac{{h^2 }}
{{2h!}} + \frac{{h^4 }}
{{4h!}}...} \right] - \frac{1}
{h}} \right] = \left[ {\left[ {\frac{1}
{h} - \frac{{0^2 }}
{{2(0)}} + \frac{{0^4 }}
{{4(0)}}...} \right] - \frac{1}
{h}} \right] = \frac{1}
{h} - \frac{1}
{h} = 0[/itex]

[itex]\mathop {\lim }\limits_{h \to 0} \left[ {\frac{{\sin (h)}}
{h}} \right] = \mathop {\lim }\limits_{h \to 0} \frac{1}
{h}\left[ {h - \frac{{h^3 }}
{{3!}} + \frac{{h^5 }}
{{5!}} - \frac{{h^7 }}
{{7!}}...} \right] = \mathop {\lim }\limits_{h \to 0} \left[ {\frac{h}
{h} - \frac{{h^3 }}
{{3h!}} + \frac{{h^5 }}
{{5h!}} - \frac{{h^7 }}
{{7h!}}...} \right] = \left[ {\frac{h}
{h} - \frac{{0^3 }}
{{3(0)}} + \frac{{0^5 }}
{{5(0)}} - \frac{{0^7 }}
{{7(0)}}...} \right] = \frac{h}
{h} = 1[/itex]

would this overall method of me taking limits now be deemed sufficient to have "proved" QUESTION 3 and QUESTION 3 PART 2 thoroughly?
 
  • #6
QUESTION 4
HallsofIvy said:
Write sin(z) and cos(z) in terms of eiz and e-iz.

Here's my attempt for QUESTION 4:

[itex]\begin{gathered}
\sin \theta = \frac{{e^{i\theta } - e^{ - i\theta } }}
{{2i}} \hfill \\
\cos \theta = \frac{{e^{i\theta } + e^{ - i\theta } }}
{2} \hfill \\
\hfill \\
\sin ^2 \theta = \left[ {\frac{{e^{i\theta } - e^{ - i\theta } }}
{{2i}}} \right]^2 = \left( {\frac{1}
{{2i}}\left( {e^{i\theta } - e^{ - i\theta } } \right)} \right)\left( {\frac{1}
{{2i}}\left( {e^{i\theta } - e^{ - i\theta } } \right)} \right) \hfill \\
= - \frac{1}
{4}\left[ {e^{2i\theta } - 2 + e^{ - 2i\theta } } \right] \hfill \\
\hfill \\
\cos ^2 \theta = \left[ {\frac{{e^{i\theta } + e^{ - i\theta } }}
{2}} \right]^2 = \left( {\frac{1}
{2}\left( {e^{i\theta } + e^{ - i\theta } } \right)} \right)\left( {\frac{1}
{2}\left( {e^{i\theta } + e^{ - i\theta } } \right)} \right) \hfill \\
= \frac{1}
{4}\left[ {e^{2i\theta } - 2 + e^{ - 2i\theta } } \right] \hfill \\
\hfill \\
\sin ^2 \theta + \cos ^2 \theta = \frac{1}
{4}e^{2i\theta } + \frac{1}
{2} + \frac{1}
{4}e^{ - 2i\theta } - \frac{1}
{4}e^{2i\theta } + \frac{1}
{2} - \frac{1}
{4}e^{ - 2i\theta } = \frac{1}
{2} + \frac{1}
{2} = 1 \hfill \\
\end{gathered}
\]
[/itex]

Seems good to me but I don't know whether that would be counted as a "rigorous" proof?
 

1. What is the Cauchy-Riemann condition?

The Cauchy-Riemann condition is a set of necessary and sufficient conditions for a complex-valued function to be differentiable at a point in the complex plane. It states that the partial derivatives of the function with respect to the real and imaginary parts of the complex variable must satisfy a certain relationship, known as the Cauchy-Riemann equations.

2. What is the significance of the Cauchy-Riemann condition in complex analysis?

The Cauchy-Riemann condition is significant because it allows us to determine the differentiability of a complex function at a point without explicitly calculating the limit. It also helps us establish a connection between real and complex differentiability, as a function that satisfies the Cauchy-Riemann equations is also differentiable in the real sense.

3. How does Taylor expansion relate to complex functions?

Taylor expansion is a way of approximating a function using a polynomial of increasing degree. In the context of complex functions, Taylor expansion can be used to represent a complex function as a power series, which allows us to evaluate the function at points where it may not be defined. This is especially useful in complex analysis, where functions can have singularities or branch points.

4. What is the Taylor series expansion for a complex function?

The Taylor series expansion for a complex function f(z) is given by:

f(z) = f(a) + f'(a)(z-a) + f''(a)(z-a)^2/2! + f'''(a)(z-a)^3/3! + ...

where a is the point around which the expansion is being performed and f'(a), f''(a), f'''(a), etc. are the derivatives of f(z) evaluated at a.

5. How is the Cauchy-Riemann condition related to the Taylor expansion of a complex function?

The Cauchy-Riemann condition is closely related to the coefficients in the Taylor expansion of a complex function. If a complex function satisfies the Cauchy-Riemann equations at a point, then its Taylor series expansion around that point will only contain terms up to the first derivative. This is because the higher-order derivatives will be equal to the first derivative due to the Cauchy-Riemann equations, resulting in a constant value in front of the (z-a)n term. Conversely, if a complex function has a Taylor series expansion up to the first derivative, it will satisfy the Cauchy-Riemann equations at that point.

Similar threads

  • Calculus and Beyond Homework Help
Replies
1
Views
535
  • Calculus and Beyond Homework Help
Replies
8
Views
235
  • Calculus and Beyond Homework Help
Replies
3
Views
562
  • Calculus and Beyond Homework Help
Replies
1
Views
216
  • Calculus and Beyond Homework Help
Replies
2
Views
917
  • Calculus and Beyond Homework Help
Replies
3
Views
416
  • Calculus and Beyond Homework Help
Replies
3
Views
1K
  • Calculus and Beyond Homework Help
Replies
6
Views
951
  • Calculus and Beyond Homework Help
Replies
6
Views
475
  • Calculus and Beyond Homework Help
Replies
2
Views
873
Back
Top