eprparadox
- 133
- 2
Homework Statement
Write the Laplace equation \dfrac {\partial ^{2}F} {\partial x^{2}}+\dfrac {\partial ^{2}F} {\partial y^{2}}=0 in terms of polar coordinates.
Homework Equations
<br /> r=\sqrt {x^{2}+y^{2}}<br />
<br /> \theta =\tan ^{-1}(\frac{y}{x})<br />
<br /> \dfrac {\partial r} {\partial x}=\cos \theta <br />
<br /> \dfrac {\partial \theta } {\partial x}=-\dfrac {\sin \theta } {r}<br />
<br /> \dfrac {\partial r} {\partial y}=\sin \theta <br />
<br /> \dfrac {\partial \theta } {\partial y}=\dfrac {\cos \theta } {r}<br />
The Attempt at a Solution
My goal was to find the second derivative of F with respect to x and y in terms of derivatives in terms of r and theta and then substitute into Laplace's equation. So I started by taking the first derivative with respect to x and y to get:
<br /> <br /> \dfrac {\partial F} {\partial x}=\dfrac {\partial F} {\partial r}\cdot \dfrac {\partial r} {\partial x}+\dfrac {\partial F} {\partial \theta }\cdot \dfrac {\partial \theta } {\partial x} =\cos \theta \dfrac {\partial F} {\partial r}-\dfrac {\sin \theta } {r}\dfrac {\partial F} {\partial \theta }<br />
<br /> \dfrac {\partial F} {\partial y}=\dfrac {\partial F} {\partial r}\cdot \dfrac {\partial r} {\partial y}+\dfrac {\partial F} {\partial \theta }-\dfrac {\partial \theta } {\partial y} =\sin \theta \dfrac {\partial F} {\partial r}+\dfrac {\cos \theta } {r}\dfrac {\partial F} {\partial \theta }<br />Based on \dfrac {\partial F} {\partial x}, I found the operator \dfrac {\partial } {\partial x} to be
\dfrac {\partial } {\partial x}=\left( \cos \theta \dfrac {\partial } {\partial r}-\dfrac {\sin \theta } {r}\dfrac {\partial } {\partial \theta }\right)
and \dfrac {\partial } {\partial y} to be
\dfrac {\partial } {\partial y}=\left( \sin \theta \dfrac {\partial } {\partial r}+\dfrac {\cos \theta } {r}\dfrac {\partial } {\partial \theta }\right)
Now I need to find \dfrac {\partial ^{2}F} {\partial x^{2}}=\dfrac {\partial } {\partial x}\left( \dfrac {\partial F} {\partial x}\right) and I get:
\dfrac {\partial } {\partial x}\left( \dfrac {\partial F} {\partial x}\right) =\left( \cos \theta \dfrac {\partial } {\partial r}-\dfrac {\sin \theta } {r}\dfrac {d} {\partial \theta }\right) \left( \cos \theta \dfrac {\partial F} {\partial r}-\dfrac {\sin \theta } {r}\dfrac {\partial F} {\partial \theta }\right)
I distribute to and simplify to get:
\dfrac {\partial } {\partial x}\left( \dfrac {\partial F} {\partial x}\right) =\cos ^{2}\theta \dfrac {\partial ^{2}F} {\partial r^2}-\dfrac {2} {r}\sin \theta \cos \theta \dfrac {\partial f^{2}} {\partial rd\theta }+\dfrac {\sin ^{2}\theta } {r^{2}}\dfrac {d^{2}F} {d\theta ^{2}}
Now I need the same for \dfrac {\partial ^{2}F} {\partial y^{2}}=\dfrac {\partial } {\partial y}\left( \dfrac {\partial F} {\partial y}\right) and I get:
\dfrac {\partial } {\partial y}\left( \dfrac {\partial F} {\partial y}\right) =\left( \sin \theta \dfrac {\partial } {\partial r}+\dfrac {\cos \theta } {r}\dfrac {\partial } {\partial \theta }\right) \left( sin\theta \dfrac {\partial F} {\partial r}+\dfrac {\cos \theta } {r}\dfrac {\partial F} {\partial \theta }\right)
I distribute and simplify to get:
\dfrac {\partial } {\partial y}\left( \dfrac {\partial F} {dy}\right) =\sin ^{2}\theta \dfrac {\partial ^{2}F} {\partial r^{2}}+\dfrac {2\sin \theta \cos \theta } {r}\dfrac {\partial ^{2}F} {\partial rd\theta }+\dfrac {\cos ^{2}\theta } {r^{2}}\dfrac {\partial ^{2}F} {\partial \theta ^{2}}
When I add these two second derivatives (wrt to x and y) and simplify, I get:
\dfrac {\partial ^{2}F} {\partial x^{2}}+\dfrac {\partial ^{2}F} {\partial y^{2}}=\dfrac {d^{2}F} {\partial r^{2}}+\dfrac {1} {r^{2}}\dfrac {\partial ^{2}F} {\partial \theta ^{2}}
But this is not completely right. The second term is correct, but the answer should be:
\dfrac {1} {r}\dfrac {\partial } {\partial r}\left( r\dfrac {\partial F} {\partial r}\right) +\dfrac {1} {r^{2}}\dfrac {\partial ^{2}F} {\partial \theta ^{2}}
I know this is a long post, but any ideas on where I went wrong?
Thanks so much in advance.
Last edited: