Classical Mechanics - Energy+Circular Motion problem

abc5dasar
Messages
5
Reaction score
0

Homework Statement


A point particle of mass m moves on a frictionless surface. Its position can be described with polar coordinates r and phi. The particle is connected to the origin of the coordinate system by a spring with spring constant k and unstretched length zero, which provides a force of magnitude k r directed toward the origin of the coordinate system.
(a) Find the potential energy due to the spring as a function of r.
(b) Write the kinetic energy as a function of r, dr/dt, and d(phi)/dt.
(c) Write the angular momentum L about the origin as a function of r and d(phi)/dt.
(d) Combine your results to write an expression for the total energy E which depends on r and dr/dt. Your expression should not depend on phi or d(phi)/dt -- you eliminate that in favor of the angular momentum.
(e) Solve for the motion r(t) in the form t - t0 equals an integral of a function of r, where that integral involves the constants E and L.
(f) For a fixed non-zero value of L, find the smallest value of E that is possible. Show that this corresponds to a circular orbit, and that the circular orbit obeys the expected F = m v^2 / R rule that you learned in first-year physics.
(g) For a fixed non-zero value of L, assume E = (13/12)*Sqrt(k/M)*L . Find the minimum and maximum values of r.

Homework Equations


See "attempt..." below

The Attempt at a Solution


part a. PE in this case is kr^2/2 (due to spring only)
part b. KE = mv^2/2, where v is r_dot^2+(r*phi_dot)^2, see attachment for how I derived this--I apologize for not being familiar with the formatting here!

L=Iw=mr^2w, w=d(phi)/dtheta

what I did: part c->solve for d(phi)/dtheta
part d->use d(phi)/dtheta from part c to replace the same thing in KE equation. Add KE and PE=Total E
part e-> solve for r_dot. Then make it into separable DE, solve the left side (integral dt=t-t_0) and it equals to a crazy right hand side below
part f->set 2E-k^r2-L^2/(m*r^2) to 0 because it can't be 0, or otherwise there is a problem. checked it and it llokd OK
(-----part g->(not sure part) set r_dot=0, solve for r, except I couldn't. I know that I should be getting 2 r values, but wolfram spits out imaginary answer. And I need to find r_dot_dot, plug in the r values. If positive=minima, negative=maxima (my plan, anyway)------)

I have work for part a-f, currently stuck in part g. And now I question my whole work.
30hlp1s.jpg

(here is the link, just in case the picture doesn't show: http://i58.tinypic.com/30hlp1s.jpg)

Thank you very much in advance. Any enlightenment or confirmation if I am in the right direction or suggestion or advice would be very much appreciated.
 
Physics news on Phys.org
Picture doesn't work, but at least the link works.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top