Denver Dang
- 143
- 1
Homework Statement
Hello.
I am supposed to find the commutator between to operators, but I can't seem to make it add up.
The operators are given by:
\hat{A}=\alpha \left( {{{\hat{a}}}_{+}}+{{{\hat{a}}}_{-}} \right)
and
\hat{B}=i\beta \left( \hat{a}_{+}^{2}-\hat{a}_{-}^{2} \right),
where alpha and beta are real numbers, i being the irrational number, and a+ and a- are the ladder operators.
Now, I just have to find the commutator [A, B]
Homework Equations
The Attempt at a Solution
By attempt is given by the following
\left[ \hat{A},\,\hat{B} \right]=\hat{A}\hat{B}-\hat{B}\hat{A}=\alpha \left( {{{\hat{a}}}_{+}}+{{{\hat{a}}}_{-}} \right)i\beta \left( \hat{a}_{+}^{2}-\hat{a}_{-}^{2} \right)-i\beta \left( \hat{a}_{+}^{2}-\hat{a}_{-}^{2} \right)\alpha \left( {{{\hat{a}}}_{+}}+{{{\hat{a}}}_{-}} \right)
=i\alpha \beta \left[ \begin{align}<br /> & -{{{\hat{a}}}_{+}}{{{\hat{a}}}_{+}}{{{\hat{a}}}_{-}}+{{{\hat{a}}}_{+}}{{{\hat{a}}}_{-}}{{{\hat{a}}}_{+}}-{{{\hat{a}}}_{-}}{{{\hat{a}}}_{+}}{{{\hat{a}}}_{-}}+{{{\hat{a}}}_{-}}{{{\hat{a}}}_{-}}{{{\hat{a}}}_{+}} \\ <br /> & -{{{\hat{a}}}_{+}}{{{\hat{a}}}_{+}}{{{\hat{a}}}_{-}}+{{{\hat{a}}}_{+}}{{{\hat{a}}}_{-}}{{{\hat{a}}}_{+}}-{{{\hat{a}}}_{-}}{{{\hat{a}}}_{+}}{{{\hat{a}}}_{-}}+{{{\hat{a}}}_{-}}{{{\hat{a}}}_{-}}{{{\hat{a}}}_{+}} \\ <br /> \end{align} \right]<br />
=2i\alpha \beta \left[ \left( -\hat{a}_{+}^{2}{{{\hat{a}}}_{-}}+{{{\hat{a}}}_{+}}{{{\hat{a}}}_{-}}{{{\hat{a}}}_{+}}-{{{\hat{a}}}_{-}}{{{\hat{a}}}_{+}}{{{\hat{a}}}_{-}}+\hat{a}{{_{-}^{2}}_{-}}{{{\hat{a}}}_{+}} \right) \right]
Now, according to the answer I have gotten from my teacher, it is supposed to be:
\left[ \hat{A},\hat{B} \right]=2i\alpha \beta \hat{A}
But I am kinda lost in how to end up with the operator A in the end, and even another alpha constant, since A operator is equal to alpha and some ladder operators.
So, what am I missing ? :)Thanks in advance.
Last edited: