futurebird
- 270
- 0
I've been asked to find the value of:
\int_{-1}^{1}z^{\frac{1}{2}}dz
Here is how I did it:
I want to change to polar form. To do that I'll use the fact that:
z=e^{i\theta} For a unit circle radius 1.
dz=ie^{i\theta}d\theta
I replace z and dz:
= \int_{-1}^{1}e^{\frac{i\theta}{2}}ie^{i\theta}d\theta
= \int_{-1}^{1}ie^{\frac{i\theta}{2}}e^{i\theta}d\theta
= \int_{-1}^{1}ie^{\frac{3i\theta}{2}}d\theta
= \frac{2}{3}\int_{-1}^{1}\frac{3i}{2}e^{\frac{3i\theta}{2}}d\theta
= \frac{2}{3}(e^{\frac{3i\theta}{2}})^{-1}_{1}
= (\frac{2}{3})(e^{\frac{3i}{2}}-e^{\frac{-3i}{2}})
Did I do this correctly? How can I check my work?
\int_{-1}^{1}z^{\frac{1}{2}}dz
Here is how I did it:
I want to change to polar form. To do that I'll use the fact that:
z=e^{i\theta} For a unit circle radius 1.
dz=ie^{i\theta}d\theta
I replace z and dz:
= \int_{-1}^{1}e^{\frac{i\theta}{2}}ie^{i\theta}d\theta
= \int_{-1}^{1}ie^{\frac{i\theta}{2}}e^{i\theta}d\theta
= \int_{-1}^{1}ie^{\frac{3i\theta}{2}}d\theta
= \frac{2}{3}\int_{-1}^{1}\frac{3i}{2}e^{\frac{3i\theta}{2}}d\theta
= \frac{2}{3}(e^{\frac{3i\theta}{2}})^{-1}_{1}
= (\frac{2}{3})(e^{\frac{3i}{2}}-e^{\frac{-3i}{2}})
Did I do this correctly? How can I check my work?