jhosamelly
- 125
- 0
Homework Statement
Find the magnitude and direction of the magnetic force on a charged particle with charge -4nC and velocity
\vec{v} = (2.5\times 10^{4}) \hat{i} + (1.1 \times 10^{4}) \hat{j} (m/s)
if the magnetic field in the region is given by
\vec{B} = (1.2\times 10^{-3}) \hat{i} + (5.6 \times 10^{-3}) \hat{j} - (3.2 \times 10^{-3}) \hat{k} (T).
Homework Equations
\vec{F} = q (\vec{v} \times \vec{B})
The Attempt at a Solution
\vec{F} = q (\vec{v} \times \vec{B})
\vec{F} = (-4 \times 10^{-9} C) \left[\left((2.5\times 10^{4}) \hat{i} + (1.1 \times 10^{4}) \hat{j}\right) \times \left((1.2\times 10^{-3}) \hat{i} + (5.6 \times 10^{-3}) \hat{j} - (3.2 \times 10^{-3}) \hat{k} \right) \right]
\vec{F} = (-4 \times 10^{-9} C)\left[\left[(1.1 \times 10^{4})(-3.2 \times 10^{-3})\right] \hat{i} - \left[(2.5 \times 10^{4})(-3.2 \times 10^{-3})\right] \hat{j}+ \left[(2.5 \times 10^{4})(5.6 \times 10^{-3}) - (1.1 \times 10^{4}) (1.2 \times 10^{-3})\right] \hat{k}\right]
\vec{F} = (-4 \times 10^{-9} C) (-35.2 \hat{i} + 80 \hat{j} + 126.8 \hat{k})
\vec{F} = (1.4 \times 10^{-7}) \hat{i} - (3.2 \times 10^{-7}) \hat{j} - (5.0 \times 10^{-7})\hat{k} (N)
Is this already the answer? Am I correct? Thanks in advance.
Last edited: