Cross product between vecter and tensor

MatCond
Messages
1
Reaction score
0

Homework Statement



Just wanted to ask what's the definition of the cross product between a vector and a range two tensor


The Attempt at a Solution



(x \times \hat{T})_{i\beta}=\epsilon_{ijk} x_j T_{k\beta}
 
Last edited:
Physics news on Phys.org
if those were true, then is the following correct ?

<br /> <br /> -(\hat{T}^{T} \times x) = (x \times \hat{T})^{T}<br /> <br />
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top