Cylinder pulled by string on flat surface w/out slipping

highroller
Messages
6
Reaction score
0
1. The problem statement: a 100kg homogeneous cylinder of radius .3m. Starts at rest. Is pulled by a string wrapped around the cylinder coming off the top with a force of 500N.

Find the angular velocity after the cylinder has rolled one revolution?



The attempt at a solution: I= 4.5kg*m^2

circumferance=1.885m

work= 500*1.885= .5m(wr)^2+.5Iw^2 (using w for omega)

answer I get ... w=11.81rad/s

supposedly correct answer is 16.71

can someone please explain. I suppose the force could be doing rotational work as well but I'm having a hard time believing that the force does double the work because of where it is applyed.

My question is which answer is correct and WHY? thanks for any help
 
Physics news on Phys.org
Welcome to PF!

Hi highroller! Welcome to PF! :smile:

(have an omega: ω and try using the X2 tag just above the Reply box :wink:)
highroller said:
a 100kg homogeneous cylinder of radius .3m. Starts at rest. Is pulled by a string wrapped around the cylinder coming off the top with a force of 500N.

Find the angular velocity after the cylinder has rolled one revolution?

work= 500*1.885= .5m(wr)^2+.5Iw^2 (using w for omega)


Yes intial energy is zero, so work done = final energy. :smile:

But what is your .5m(ωr)2 supposed to be?

There's no extra mass … it's only a cylinder, with energy 1/2 Iω2 :wink:
 
the cylinder has both linear and rotational ke so the .5m(wr)^2 comes from .5mv^2 with v=wr
 
highroller said:
the cylinder has both linear and rotational ke so the .5m(wr)^2 comes from .5mv^2 with v=wr

ah, sorry … i looked at your 500*1.885 and assumed that the axle was fixed. :redface:

Hint: how fast is the string moving? :smile:
 
highroller said:
work= 500*1.885= .5m(wr)^2+.5Iw^2 (using w for omega)
Imagine someone pulling the string. In order to have the cylinder roll through one revolution, for what distance must they pull the string? (Don't forget that the string is unwinding as it's being pulled.)
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top