Damped harmonic oscillator for a mass hanging from a spring

Click For Summary
The discussion focuses on solving a damped harmonic oscillator problem involving a mass hanging from a spring. The general solution for damped harmonic motion is provided, indicating that the mass will oscillate around its equilibrium position. A hammer blow gives an initial velocity but does not classify the system as a driven oscillator; it simply sets initial conditions. The key is to apply the general solution to fit the specific initial conditions of the problem. Understanding these concepts is crucial for accurately solving the differential equation associated with the motion.
Phantoful
Messages
30
Reaction score
3

Homework Statement


g9XAO77.png


Homework Equations


Complex number solutions
z= z0eαt
Energy equations and Q (Quality Factor)

The Attempt at a Solution


For this question, I followed my book's "general solution" for dampened harmonic motions, where z= z0eαt, and then you can solve for α and eventually getting an answer of x=Ae-(ϒ/2)tcos(ω1t+∅) where ω1=sqrt((ω02-(ϒ/2)2)). This is just for the underdampened case and there are other solutions for the critical and overdampened case. However, I don't think these are the answers and I'm not even sure how to interpret these "general solutions". For this question would the case be any different if a v(0) = v0, and the mass is hanging? Should I treat it like a driven harmonic oscillator because of the hammer? This is the first time I'm answering a question like this one.
 

Attachments

  • g9XAO77.png
    g9XAO77.png
    20.6 KB · Views: 1,878
Physics news on Phys.org
All the hammer blow does is to give you a non-zero initial velocity. Otherwise, just solve the ODE for the prescribed conditions.
 
  • Like
Likes Phantoful
Phantoful said:

Homework Statement


View attachment 223518

Homework Equations


Complex number solutions
z= z0eαt
Energy equations and Q (Quality Factor)

The Attempt at a Solution


For this question, I followed my book's "general solution" for dampened harmonic motions, where z= z0eαt, and then you can solve for α and eventually getting an answer of x=Ae-(ϒ/2)tcos(ω1t+∅) where ω1=sqrt((ω02-(ϒ/2)2)). This is just for the underdampened case and there are other solutions for the critical and overdampened case. However, I don't think these are the answers and I'm not even sure how to interpret these "general solutions". For this question would the case be any different if a v(0) = v0, and the mass is hanging? Should I treat it like a driven harmonic oscillator because of the hammer? This is the first time I'm answering a question like this one.

The general solution in the book is applicable to your problem. A hanging mass will oscillate about its equilibrium position. x is the deviation from the equilibrium.
Hitting once with the hammer does not mean that the oscillator is driven., It provides the initial conditions you have to fit the general solution to: At t=0 x(0)=0 and v(0)=v0. Determine A and θ for each case.
 
  • Like
Likes Phantoful
Thank you!
Dr.D said:
All the hammer blow does is to give you a non-zero initial velocity. Otherwise, just solve the ODE for the prescribed conditions.

ehild said:
The general solution in the book is applicable to your problem. A hanging mass will oscillate about its equilibrium position. x is the deviation from the equilibrium.
Hitting once with the hammer does not mean that the oscillator is driven., It provides the initial conditions you have to fit the general solution to: At t=0 x(0)=0 and v(0)=v0. Determine A and θ for each case.
 
Beams of electrons and protons move parallel to each other in the same direction. They ______. a. attract each other. b. repel each other. c. neither attract nor repel. d. the force of attraction or repulsion depends upon the speed of the beams. This is a previous-year-question of CBSE Board 2023. The answer key marks (b) as the right option. I want to know why we are ignoring Coulomb's force?
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
I treat this question as two cases of Doppler effect. (1) When the sound wave travels from bat to moth Speed of sound = 222 x 1.5 = 333 m/s Frequency received by moth: $$f_1=\frac{333+v}{333}\times 222$$ (2) When the sound wave is reflected from moth back to bat Frequency received by bat (moth as source and bat as observer): $$f_2=\frac{333}{333-v}\times f_1$$ $$230.3=\frac{333}{333-v}\times \frac{333+v}{333}\times 222$$ Solving this equation, I get ##v=6.1## m/s but the answer key is...