Damped Oscillator Conceptual Problem and Differential Equation Solution

  • Thread starter Thread starter ggilvar99
  • Start date Start date
  • Tags Tags
    Damped Oscillator
AI Thread Summary
The discussion revolves around a damped oscillator system consisting of a mass connected to a spring with viscous damping. The user is trying to formulate the differential equation for horizontal oscillations based on given observations about static compression and resistive forces. They express confusion about translating the viscous force into a comprehensive differential equation for all velocities. Suggestions are made to derive the spring constant (k) and damping coefficient (λ) from the conditions provided, leading to a clearer understanding of the problem. The conversation emphasizes the importance of correctly applying the relationships between forces and motion in deriving the necessary equations.
ggilvar99
Messages
6
Reaction score
0
Hey guys I'm new to the forum and having a little trouble with this conceptual problem.

1. A block of mass m is connected to a spring, the other end of which is fixed. There is also a viscous damping mechanism. The following observations have been made of this system:

i) If the block is pushed horizontally with a force equal to mg, the static compression of the spring is equal to h

ii) The viscous resistive force is equal to mg as the block moves with a speed u.


a) Write the differential equation governing horizontal oscillations of the mass in terms of m, g, h and u.

b) for the particular case of u = 3√gh, what is the angular frequency of the damped oscillations?


2. Homework Equations :

mx'' + λx' + kx = 0


3. The Attempt at a Solution :

F = mg = -kh (x = h)

F = mg = -λu for x' = u

At this point I'm somewhat lost and not sure what they're looking for. If the viscous force = mg at velocity u, how can you translate that into a differential equation that covers all velocities of the mass? Any help would be greatly appreciated
 
Physics news on Phys.org
Can you obtain express ##k## and ##\lambda## from the conditions given?
 
Oh, you're saying to set k = -(mg)/h and lambda = -(mg)/u and plug that into the diffeq? I don't know why that never occurred to me, thanks a lot for the suggestion!
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top