Damped Oscillator Conceptual Problem and Differential Equation Solution

  • Thread starter Thread starter ggilvar99
  • Start date Start date
  • Tags Tags
    Damped Oscillator
AI Thread Summary
The discussion revolves around a damped oscillator system consisting of a mass connected to a spring with viscous damping. The user is trying to formulate the differential equation for horizontal oscillations based on given observations about static compression and resistive forces. They express confusion about translating the viscous force into a comprehensive differential equation for all velocities. Suggestions are made to derive the spring constant (k) and damping coefficient (λ) from the conditions provided, leading to a clearer understanding of the problem. The conversation emphasizes the importance of correctly applying the relationships between forces and motion in deriving the necessary equations.
ggilvar99
Messages
6
Reaction score
0
Hey guys I'm new to the forum and having a little trouble with this conceptual problem.

1. A block of mass m is connected to a spring, the other end of which is fixed. There is also a viscous damping mechanism. The following observations have been made of this system:

i) If the block is pushed horizontally with a force equal to mg, the static compression of the spring is equal to h

ii) The viscous resistive force is equal to mg as the block moves with a speed u.


a) Write the differential equation governing horizontal oscillations of the mass in terms of m, g, h and u.

b) for the particular case of u = 3√gh, what is the angular frequency of the damped oscillations?


2. Homework Equations :

mx'' + λx' + kx = 0


3. The Attempt at a Solution :

F = mg = -kh (x = h)

F = mg = -λu for x' = u

At this point I'm somewhat lost and not sure what they're looking for. If the viscous force = mg at velocity u, how can you translate that into a differential equation that covers all velocities of the mass? Any help would be greatly appreciated
 
Physics news on Phys.org
Can you obtain express ##k## and ##\lambda## from the conditions given?
 
Oh, you're saying to set k = -(mg)/h and lambda = -(mg)/u and plug that into the diffeq? I don't know why that never occurred to me, thanks a lot for the suggestion!
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top