How Does DC Motor Commutation Influence Rotation and Torque?

AI Thread Summary
DC motor commutation is essential for continuous rotation and torque generation. It involves reversing the current direction in the coil to maintain movement past the vertical position, preventing the coil from stopping at 90 degrees where torque is zero. A commutator automates this switching process, ensuring that the current flows correctly relative to the magnetic field, allowing for consistent torque. Without commutation, the motor would oscillate and eventually halt at 90 degrees due to opposing forces. Understanding these principles is crucial for effectively utilizing DC motors in various applications.
sumit sawai
Messages
5
Reaction score
0
i am unable to understand dc motor commutation can anybody help please
 
Engineering news on Phys.org
There are many diagrams on the web - take a look.
Here's one http://www.pc-control.co.uk/dc-motors.htm.
Referring to the picture at the top of the link: the forces on the two lengths of coil parallel to the shaft are in different directions, one up and one down (because the flow of current is in two different directions through each leg of the coil). This will cause the coil to turn. However, it will only be turned until it lies at right angles to the magnetic field lines and the coil lies in a vertical plane. In order to make it keep turning clockwise, rather than keeping being pulled into the vertical position, you need to reverse the direction of the current so that the top section is pulled down and the bottom bit is pulled up. (The momentum will carry it past the exact vertical position). You could do this switching yourself by changing the connections to the battery every time the coil completes half a turn. But, if you use a commutator, which rotates with the coils the switching is done for you automatically at exactly the right time. The segments of the commutator are arranged to make the switchover so that current will always be going left to right on the S pole side and right to left on the N pole side.
The maximum torque is when the coil is horizontal. More complicated motors have 'multipoles', coils wound at all angles. This gives a good torque at all angles of the motor and the commutator provides switching when each of the multiple coils is vertical.
This is only one of dozens of animations:
http://www.edumedia-sciences.com/en/a182-dc-motor
 
Actually commutation is just nothing but changing the direction of the current. in electrical fields, the force direction is mainly depends upon how the current cuts the magnetic field. Let us take the diagram of the first link which is given above by sophiecentaur. The field direction goes from right to left (from north to south) and current flows towards outside near north pole same but current is in opposite direction near south pole. now the force acting near the north pole is equal to F = I*a*B (I-current,a-length of the wire,b-magnetic field) please note I and B are vectors. so the force experienced at the north pole is downwards. at the south pole the force is same but direction is directly opposite to north pole because current direction is opposite. this creates the torquewhich makes the coil to rotate.
Here comes your question, if you don't use the commutator (changing the current direction), still this will work up to 90 degree it may even go beyond 90 degree due to inertia but after this the coil will start oscillate back and forth then finally it will halt at 90 degree (where force and torque both are zero) due to change in force directions. if you use commutator, once the coil goes beyond 90 degree the current direction changes which makes forces to continue in the same direction so your motor never comes to halt it continue rotation in the same direction.
 
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
I am not an electrical engineering student, but a lowly apprentice electrician. I learn both on the job and also take classes for my apprenticeship. I recently wired my first transformer and I understand that the neutral and ground are bonded together in the transformer or in the service. What I don't understand is, if the neutral is a current carrying conductor, which is then bonded to the ground conductor, why does current only flow back to its source and not on the ground path...
Back
Top