Derivation of the Eqation of Motion from Fermi Lagrangian density

radioactive8
Messages
46
Reaction score
0

Homework Statement


Hello, I am trying to find the equations of motion that come from the fermi lagrangian density of the covariant formalism of Electeomagnetism.

Homework Equations


The form of the L. density is:
$$L=-\frac{1}{2} (\partial_n A_m)(\partial^n A^m) - \frac{1}{c} J_m A^m$$

where J is the electric current.
The result has to be:

$$\partial_n \partial^n A^m = \frac{1}{c} J^m$$

The Attempt at a Solution


Using the Euler- Lagrange equations that derive the eq. of motion I do not understant if I have to treat the fields Am and Am. In addition, the Euler Lagrange equations from a L.density of the form:
$$L=-\frac{1}{2} (\partial_n A_m)(\partial_n A_m) - \frac{1}{c} J_m A^m$$
giveaway the wanted result. But I could not relate the two L.densities.
 
Physics news on Phys.org
How did you lower the indices to get the density in §3 ?
I think the density in §3 is not covariant and it is then incorrect.
There must be elements of the metric tensor missing in the density of §3 .
 
maajdl said:
How did you lower the indices to get the density in §3 ?
I think the density in §3 is not covariant and it is then incorrect.
There must be elements of the metric tensor missing in the density of §3 .

Indeed. OP, please show your work.
 
I did not lower any indices. And yes it is not covariant at all so it could not be a lagrangian. It was something a digged up on the internet while I was working at the solution of my problem. However, I did not notice while posting the thread that it was not covariant.

Now, Let's focus on the first L.density.

I tried playing with the indexes and my metric.

Is the following correct? :

$$L=-1/2(\partial_n A_m)( \partial^n A^m) = -\frac{1}{2} (g_{ns} \partial^s A_m)(g^{nr} \partial_r A^m) = -\frac{1}{2} \delta_{s}^{r}(\partial^s A_m)( \partial_r A^m)= -\frac{1}{2} (\partial^s A_m)(\partial_s A^m) $$

So the partial derivative $$\frac{ \partial L}{\partial (\partial_s A^m)}$$ equals:

$$\partial_s (\frac{ \partial L}{\partial (\partial_s A^m)})= \partial_s \partial^s A^m$$
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top