- #1

platonic

- 39

- 0

The question asks to derive the equation you need to find the resistance of a voltmeter in a simple RC circuit like the one shown here:

http://people.ee.duke.edu/~cec/final/node32.html [Broken]

But R2 in the link is actually a capacitor in my circuit.

The equations in the lab journal are

Vc=q/C

V0=VR+Vc

I=VR/R

VC=V0(1-e^(-t/RC))

I=I0e^(-t/RC)

Vc=V0e^(-t/RC)

t=RCln(V0/VC)

VC=(Vm(R1+Rm))/Rm

I don't even know where to begin with this problem, because I'm not sure which equation to derive, let alone how to derive it. I'm guessing it's the last one I posted, but I'm not sure if the equation we are supposed to use was listed or not. Please help.

http://people.ee.duke.edu/~cec/final/node32.html [Broken]

But R2 in the link is actually a capacitor in my circuit.

The equations in the lab journal are

Vc=q/C

V0=VR+Vc

I=VR/R

VC=V0(1-e^(-t/RC))

I=I0e^(-t/RC)

Vc=V0e^(-t/RC)

t=RCln(V0/VC)

VC=(Vm(R1+Rm))/Rm

I don't even know where to begin with this problem, because I'm not sure which equation to derive, let alone how to derive it. I'm guessing it's the last one I posted, but I'm not sure if the equation we are supposed to use was listed or not. Please help.

Last edited by a moderator: