Derivation of van der pol oscillator

Slightly
Messages
29
Reaction score
0

Homework Statement


Given characteristic equation for a circuit containing a diode, I must figure out how to fit a polynomial to the curve so that the van der pol equation is obtained.

The paper I am reading is here:

http://www.unige.ch/math/hairer60/pres/pres_rentrop.pdf

My doubts are located on page three where the author talks about fitting the polynomial of degree three. I am trying to fill in the details as it isn't quite clear what he is actually doing.

Suggestions?

Should I plug the polynomial into the characteristic equation and manipulate it? Or is there some other technique?
 
Physics news on Phys.org
He is just filling it in I think.

C\ddot{U} + \left( \frac{RC}{L} + \frac{d}{du}\left(a_1U +a_2U^2 +a_3U^3\right)\right)\dot{U} + \frac{1}{L}\left(R(a_1U +a_2U^2 +a_3U^3) + U - U_{op}\right)

It looks like it is going to look as is stated. Have you tried it and doesn't it work?
 
barefeet said:
He is just filling it in I think.

C\ddot{U} + \left( \frac{RC}{L} + \frac{d}{du}\left(a_1U +a_2U^2 +a_3U^3\right)\right)\dot{U} + \frac{1}{L}\left(R(a_1U +a_2U^2 +a_3U^3) + U - U_{op}\right)

It looks like it is going to look as is stated. Have you tried it and doesn't it work?
Yea, I tried plugging everything in like you just did, but I could not figure out how to get rid of the U^3 term.
 
In the bracket it vanishes due to the derivative, but outside it does not.
Setting y=U+d with the right constant d gets rid of the U term in the brackets, but then you still have those U^2 and U^3 outside.
 
That's exactly what I don't want. I'm trying to figure out how they get to the van der pol equation.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top