Can You Derive Equations Using UAM Principles?

  • Thread starter Thread starter jensgt
  • Start date Start date
  • Tags Tags
    deriving
AI Thread Summary
The discussion revolves around deriving equations 5-1 and 5-2 using Uniformly Accelerated Motion (UAM) principles. A participant expresses uncertainty about how to begin, mentioning attempts with range and height equations without success. Others suggest focusing on standard constant acceleration equations for both x and y directions, emphasizing the importance of using the correct variables. They encourage sharing progress and remind to avoid confusing notation. The conversation highlights the collaborative effort to understand and apply UAM concepts in physics.
jensgt
Messages
7
Reaction score
0

Homework Statement


Can you come up with (i.e. derive) equations 5-1 and 5-2 on your own using UAM equations? Try it


Homework Equations



This is the equation I need to end up at...

R=Vox/g(Voy+(Voy^+2gh)^1/2


The Attempt at a Solution



I am not really sure where to start. I was trying to use the equations for range and height but it does not seem to be getting me anywhere. This is my first physics course.
 
Physics news on Phys.org
welcome to pf!

hi jensgt! welcome to pf! :smile:

(try using the X2 button just above the Reply box :wink:)

don't try to memorise (or use) the range or height equations :wink:, go back to the standard constant acceleration equations, for the x and y directions (separately)

they'll use the same t …

show us what you get :smile:
 
The equations I know are

Vx = Vox + Axt

X = Xo + Voxt + 1/2axt^2

X-Xo = [(Vox + Vx)/2]t

Vx^2 = Vox^2 +2ax(X-Xo)

I am just confused as to where to start. I derived the other one he asked us about this one has me stuck.
 
hi jensgt! :smile:

(just got up :zzz:)
jensgt said:
I am just confused as to where to start.

use x = xo + Vxot + 1/2axt2

and y = yo + Vyot + 1/2ayt2

(obviously, ax = 0) …

show us what you get :smile:

(btw, never use "x" for times, it's too confusing … use "*" instead, or nothing at all! :wink:)
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top