Thanks for getting the ball rolling rude man. The most challenging part is coming up with the differential equation.
\begin{array}{l}<br />
{\rm{Find natural response:}} \\ <br />
\frac{{{v_1}}}{1} + \frac{1}{2}\frac{{d{v_1}}}{{dt}} + \frac{{{v_1} - {v_2}}}{1} = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to \,\,\,\frac{1}{2}\frac{{d{v_1}}}{{dt}} + 2{v_1} - {v_2} = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1 \\ <br />
\frac{{{v_2} - {v_1}}}{1} + \frac{1}{3}\frac{{d{v_2}}}{{dt}} = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to {v_1} = {v_2} + \frac{1}{3}\frac{{d{v_2}}}{{dt}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2 \\ <br />
{\rm{Substitute }}{v_1}{\rm{ into equation 1:}} \\ <br />
\frac{1}{2}\left[ {\frac{{d{v_2}}}{{dt}} + \frac{1}{3}\frac{{{d^2}{v_2}}}{{d{t^2}}}} \right] + 2{v_2} + \frac{2}{3}\frac{{d{v_2}}}{{dt}} - {v_2} = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to \frac{1}{6}\frac{{{d^2}{v_2}}}{{d{t^2}}} + \frac{1}{2}\frac{{d{v_2}}}{{dt}} + \frac{2}{3}\frac{{d{v_2}}}{{dt}} + {v_2} = 0 \\ <br />
\frac{{{d^2}{v_2}}}{{d{t^2}}} + 7\frac{{d{v_2}}}{{dt}} + 6{v_2} = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to {\rm{let }}{v_2} = {e^{st}}\,\,\,\,\,\,\,\,\,\,\,\,\, \to {s^2}{e^{st}} + 7s{e^{st}} + 6{e^{st}} = 0 \\ <br />
{\rm{characteristic equation = }}{s^2} + 7s + 6 \to \,{\rm{ roots }} - 6{\rm{ and }} - 1 \\ <br />
{v_{2{\rm{natural}}}}(t) = A{e^{ - 6t}} + B{e^{ - t}} \\ <br />
{v_2}(t) = 5 + A{e^{ - 6t}} + B{e^{ - t}} \\ <br />
@t = 0\,\,{v_2}(0) = 0 = 5 + A + B\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to A + B = - 5 \\ <br />
\frac{{d{v_2}}}{{dt}} = - 6A{e^{ - 6t}} - B{e^{ - t}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to @t = 0\,\,\frac{{d{v_2}(0)}}{{dt}} = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to 0 = - 6A - B \\ <br />
- 6A - B = 0 \\ <br />
A + B = - 5\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to A = 1,\,\,\,B = - 6 \\ <br />
{v_2}(t) = 5 + {e^{ - 6t}} - 6{e^{ - t}} \\ <br />
{\rm{ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - }} \\ <br />
{\rm{Find }}{v_0}{\rm{:}} \\ <br />
{{\rm{v}}_0} = {v_1} - {v_2} \\ <br />
{\rm{From equation 2: }}{v_1} = {v_2} + \frac{1}{3}\frac{{d{v_2}}}{{dt}} \\ <br />
{v_0} = {v_2} + \frac{1}{3}\frac{{d{v_2}}}{{dt}} - {v_2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to {v_0} = \frac{1}{3}\frac{{d{v_2}}}{{dt}} \\ <br />
{v_0}(t) = \frac{1}{3}\left( { - 6{e^{ - 6t}} + 6{e^{ - t}}} \right)\,\,\,\,\,\, \to {v_0}(t) = 2\left( {{e^{ - t}} - {e^{ - 6t}}} \right)V \\ <br />
\end{array}