Deriving the Lorentz Transformation from the Homogeneity of Spacetime

hgandh
Messages
26
Reaction score
2

Homework Statement


Show that the isotropy and homogeneity of space-time and equivalence of different inertial frames (first postulate of relativity) require that the most general transformation between the space-time coordinates (x, y, z, t) and (x', y', z', t') is the linear transformation,
x'=f(v2)x-vf(v2)t; t'=g(v2)t-vh(v2)x; y'=y; z'=z
and its inverse,
x=f(v2)x'+vf(v2)t'; t=g(v2)t'+vh(v2)x'; y=y'; z'=z'

Homework Equations

The Attempt at a Solution


Now, I know that homogeneity implies that the transformation must be linear in x and t and that the isotropy of space implies that the coefficients can only be functions of the magnitude of the velocity (not the direction) at most. Therefore, I am stuck at the following:
x'=f(v2)x-vf0(v2)t; t'=g(v2)t-vh(v2)x; y'=y; z'=z
However, I am having trouble proving that f = f0. The solution I am looking at says that this follows from the homogeneity of space-time but I am having trouble using that fact to prove it.
 
Physics news on Phys.org
Hmm. Which source/solution are you looking at? (Can you post a reference or link?)

In my derivation of this stuff, the result that ##f = f_0## emerges from the properties of any 1-parameter Lie group (which is what you're deriving here). I.e., 2 successive transformations (in the same direction) with different parameters ##v,v'## must commute. This imposes some constraints on the various functions.
 
strangerep said:
Hmm. Which source/solution are you looking at? (Can you post a reference or link?)

In my derivation of this stuff, the result that ##f = f_0## emerges from the properties of any 1-parameter Lie group (which is what you're deriving here). I.e., 2 successive transformations (in the same direction) with different parameters ##v,v'## must commute. This imposes some constraints on the various functions.
http://faculty.uml.edu/cbaird/all_homework_solutions/Jackson_11_1_Homework_Solution.pdf
 
Hmm. (Sigh.) Well, I will say that I think there are some unnecessary fudges in that solution. So I'm not sure how I can usefully help you. I could (possibly) show you (a version of) my derivation, but it would be rather different from the solution you've been given.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top