Deriving the mass conservation integral in GR

tcw
Messages
9
Reaction score
0

Homework Statement



Starting from a general axisymmetric metric
ds^2=g_tt dt^2 + 2g_tφ dtdφ +g_φφ dφ^2 + g_rr dr^2+g_θθ dθ^2 ...(0)
where the metric components are functions of the coordinates r and θ only.

I've managed to show (via Euler-Lagrange equations) that
g_tt dt/dτ + g_tφ dφ/dτ = E ...(1) and
g_tφ dt/dτ + g_φφ dφ/dτ = -L_z ...(2)
(where E and L_z are constants, and τ an affine parameter)

I am required to derive the mass conservation integral:
g_rr (dr/dτ)^2 + g_θθ (dθ/dτ)^2 = -V_eff (r,θ,E,L_z)
which I'm having trouble doing.

Homework Equations


The Attempt at a Solution



Dividing (0) by dτ^2 and substituting (1) and (2), and re-arranging gives:
g_rr (dr/dτ)^2 + g_θθ (dθ/dτ)^2 = (ds/dτ)^2 - E dt/dτ + L_z dφ/dτ ...(3)
but I'm not sure where to go from here.

I thought about trying to solve (1) and (2) simultaneously for dt/dτ and dφ/dτ to substitute into (3) but that doesn't seem to work.

I'd appreciate any help, thanks.
 
Physics news on Phys.org
I've spent a bit more time and still no luck. Any pointers?
 
Should I latex it up to get responses?
 
tcw said:
Should I latex it up to get responses?
Just the fact that you didn't use LaTeX isn't itself a reason for people not to answer your question, but it would definitely help if you can put those formulas in LaTeX. I just tried reading through your question and it's kind of hard to parse with the formulas written out in text.
 
diazona said:
Just the fact that you didn't use LaTeX isn't itself a reason for people not to answer your question, but it would definitely help if you can put those formulas in LaTeX. I just tried reading through your question and it's kind of hard to parse with the formulas written out in text.

Thanks for your help, I'll do that then.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top