MHB Did my book do this wrong? (Vector Cross Product)

Pindrought
Messages
15
Reaction score
0
Reading a book about 3d math, and I am confused as to what happened on this Vector Cross Product problem. I'm thinking there was just an error that wasn't caught.

i92Cuh.png
For the first row, instead of (3)(8)-(-4)(-5) shouldn't it have been (3)(8)-(4)(-5) and had the same displayed result of 44?
And for the second row, instead of (-4)(2)-(1)(8) shouldn't it have been (4)(2)-(1)(8) and had the result of 0?
For the last row, shouldn't the final result be -11?

Thanks!
 
Last edited:
Physics news on Phys.org
The book is indeed wrong:

$(1,3,4) \times (2,-5,8) = ((3)(8) - (4)(-5), (4)(2) - (1)(8), (1)(-5) - (3)(2))$

$= (44,0,-11)$ which speaks somewhat ill of the original author and proof-reader of your text.
 
Pindrought said:
Reading a book about 3d math, and I am confused as to what happened on this Vector Cross Product problem. I'm thinking there was just an error that wasn't caught.

For the first row, instead of (3)(8)-(-4)(-5) shouldn't it have been (3)(8)-(4)(-5) and had the same displayed result of 4?
And for the second row, instead of (-4)(2)-(1)(8) shouldn't it have been (4)(2)-(1)(8) and had the result of 0?
For the last row, shouldn't the final result be -11?

Thanks!
There are at least two misprints/errors in the example. It looks as though the author intended to write $$\begin{bmatrix}1\\3\\ {\color{red}-}4 \end{bmatrix} \times \begin{bmatrix}2\\-5\\ 8 \end{bmatrix} = \begin{bmatrix}(3)(8) - (-4)(-5)\\(-4)(2) - (1)(8)\\ (1)(-5) - (3)(2) \end{bmatrix} = \begin{bmatrix}4\\-16\\ {\color{red}-11} \end{bmatrix}.$$
 
Thank you very much!
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top