Differential pair, current mirror: high frequency analysis

AI Thread Summary
The discussion focuses on the high-frequency response of MOSFET and BJT differential pairs when polarized by a current mirror. It highlights that the bypass capacitor Cgdm is significant at lower frequencies compared to the internal capacitances of the transistors. The internal capacitance of the current mirror is noted to dominate the low-frequency response, acting similarly to a bypass capacitor. A key point raised is the difference in frequency behavior between the capacitance of the current mirror and the internal capacitances of the main transistors. The Sedra-Smith book is referenced, explaining that the interaction between 2r0 and Cgdm results in a low-frequency zero, allowing other internal capacitances to be treated as open circuits.
eliotsbowe
Messages
34
Reaction score
0
Hello, I have a doubt about the high frequency response of the MOSFET (or BJT as well) differential couple in the case it's polarized by a current mirror.

Here's a picture of my issue (it shows the semi-differential circuit of a MOSFET differential couple with a "small" common mode ac input; the current mirror was replaced by its high frequency small signal model)
http://s3.postimage.org/x84o1dsxv/asdasd.jpg

The picture says (sorry for posting a non-english text) that Cgdm is to be considered a bypass capacitor and the MOSFET should be replaced by its low frequency (!) small signal model.
The sense of this is that Cgdm "exists" at much lower frequencies than the internal capacitances of the MOSFETs composing the differential couple.

I found the same statement about the BJT differential couple (with a BJT-based current mirror connected to the emitter): the internal capacitance of the mirror dominates the low frequency response of the whole circuit and it acts like a bypass capacitor.

So, my question is: why is there such a difference between the "life" (on the frequency axis) of the capacitance of the mirror and the one of the internal capacitances of the two main transistors?

Thanks in advance for your help.
 
Engineering news on Phys.org
I found it. The Sedra-Smith's book says that the interaction between 2r0 and Cgdm creates a low frequency zero. Every other internal capacitance is to be considered as an open circuit, then.
 
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
While I was rolling out a shielded cable, a though came to my mind - what happens to the current flow in the cable if there came a short between the wire and the shield in both ends of the cable? For simplicity, lets assume a 1-wire copper wire wrapped in an aluminum shield. The wire and the shield has the same cross section area. There are insulating material between them, and in both ends there is a short between them. My first thought, the total resistance of the cable would be reduced...
I am not an electrical engineering student, but a lowly apprentice electrician. I learn both on the job and also take classes for my apprenticeship. I recently wired my first transformer and I understand that the neutral and ground are bonded together in the transformer or in the service. What I don't understand is, if the neutral is a current carrying conductor, which is then bonded to the ground conductor, why does current only flow back to its source and not on the ground path...
Back
Top