Dirac Delta using periodic functions

Click For Summary
SUMMARY

The discussion focuses on the derivation and manipulation of the Dirac Delta function using periodic functions, specifically through the application of Fourier series. The user employs the identity ##\sin(a)\sin(b)+\cos(a)\cos(b)=\cos(a-b)## to transform integrals involving the Dirac Delta function and periodic terms. Key transformations include setting ##u=\frac{\pi}{L}(x-y)## and utilizing Cauchy's formula to derive the result ##\int dx f(x)\delta(x-y)=f(y)##. The conversation culminates in the introduction of a new definition for the Dirac Delta function, linking it to Fourier series and periodicity.

PREREQUISITES
  • Understanding of Fourier series and transforms
  • Familiarity with the Dirac Delta function and its properties
  • Knowledge of complex analysis, particularly Cauchy's integral formula
  • Basic calculus, including integration techniques
NEXT STEPS
  • Study the properties of the Dirac Delta function in the context of Fourier analysis
  • Explore the application of Cauchy's integral formula in complex analysis
  • Learn about periodic functions and their representation using Fourier series
  • Investigate the implications of the Fourier transform on signal processing
USEFUL FOR

Mathematicians, physicists, and engineers interested in signal processing, Fourier analysis, and the applications of the Dirac Delta function in theoretical and applied contexts.

SisypheanZealot
Messages
9
Reaction score
6
Homework Statement
Exercise1.3: Using the periodic form (1.14) for the Dirac delta, show
$$\int^{\infty}_{-\infty}dx\:f(x)\delta(x-y)=\sum^{\infty}_{n=-\infty}f(y+2nL)$$
Relevant Equations
$$\delta(x-y)=\frac{1}{2L}\sum^{\infty}_{n=-\infty}\lbrace sin(\frac{n\pi x}{L})sin(\frac{n\pi y}{L})+cos(\frac{n\pi x}{L})cos(\frac{n\pi y}{L})\rbrace$$
I know it is something simple that I am missing, but for the life of me I am stuck. So, I used the identity ##sin(a)sin(b)+cos(a)cos(b)=cos(a-b)## which gives me $$\int^{\infty}_{-\infty}dx\:f(x)\delta(x-y)=\int^{\infty}_{-\infty}dx\:f(x)\frac{1}{2L}\sum^{\infty}_{n=-\infty}\lbrace sin(\frac{n\pi x}{L})sin(\frac{n\pi y}{L})+cos(\frac{n\pi x}{L})cos(\frac{n\pi y}{L})\rbrace$$ $$=\int^{\infty}_{-\infty}dx\:f(x)\frac{1}{2L}\sum^{\infty}_{n=-\infty}cos(\frac{n\pi}{L}(x-y))$$ Then I performed the transformation ##u=\frac{\pi}{L}(x-y)## giving $$=\frac{1}{2L}\sum^{\infty}_{n=-\infty}\frac{L}{\pi}\int^{\infty}_{-\infty}du\:f(u\frac{L}{\pi}+y)cos(u\cdot n)$$ $$=\int^{\infty}_{-\infty}du\:f(u\frac{L}{\pi}+y)\frac{1}{2\pi}\sum^{\infty}_{n=-\infty}cos(u\cdot n)$$ $$\int^{\infty}_{-\infty}du\:f(u\frac{L}{\pi}+y)\lbrace\frac{1}{2\pi}+\frac{1}{\pi}\sum^{\infty}_{n=1}cos(u\cdot n)\rbrace$$ Now we have ##u=2\pi## as the solutions for ##cos(u\cdot n)=1## which to me looks like it gives ##f(2L+y)##. What am I not seeing?
 
Last edited:
Physics news on Phys.org
New thought. What if I work backwards on this. so start with $$\sum^{\infty}_{n=-\infty}f(2nL+y)$$ Then set this equal to $$\int dx f(x)\sum^{\infty}_{n=-\infty}\delta(x-(2nL+y))$$ Now look at the delta term as a periodic term, and look at the Fourier transform definition of the Dirac Delta $$\delta(x-y)=\int\frac{dz}{2\pi}e^{iz(x-y)}$$ The Fourier will be invariant under rotation of multiples of ##2\pi##. So then, I can rewrite the integral as $$\int\frac{dz}{2\pi}e^{iz(x-y)}e^{-i2n\pi}$$ This will then give the new definition of the delta function $$\sum^{\infty}_{n=-\infty}\delta(x-(2n\pi-y))=\sum^{\infty}_{n=-\infty}\int\frac{dz}{2\pi}e^{iz(x-y)}e^{-i2n\pi}$$. But, then I need to worry about the modes of the system. I don't know if this moved me forward, or just in circles.
 
So, for the interested. I think I finally got this thing figured out. The first thing that we are going to do is transition to the complex Fourier series definitions of ##f(x)## and ##\delta(x-y)## and set ##L=\pi##. i.e. $$f(x)=\sum_{n=-\infty}^{\infty}c_{n}e^{inx}$$ and $$\delta(x-y)=\int\frac{dz}{2\pi}e^{iz(x-y)}$$ So that the formula takes the form $$\int dx f(x)\delta(x-y)=\int dx \sum_{n=-\infty}^{\infty}c_{n}e^{inx}\int\frac{dz}{2\pi}e^{iz(x-y)}$$ then doing some algebra we get $$\int dx \sum_{n=-\infty}^{\infty}c_{n}\int\frac{dz}{2\pi}e^{i[z(x-y)+nx]}$$ performing the integration we then get $$\sum_{n=-\infty}^{\infty}c_{n}\int dx\frac{e^{i[z(x-y)+nx]}}{2\pi i(x-y)}$$ Now we apply Cauchy's formula ##\oint\frac{g(w)}{w-w_0}dz=2\pi ig(w_0)## to this. Doing so we notice that the translations are ##w=x,w_0=y##, and that there is a pole at ##x=y##. So, the problem becomes $$\sum_{n=-\infty}^{\infty}c_{n}\int dx\frac{e^{i[z(x-y)+nx]}}{2\pi i(x-y)}=\sum_{n=-\infty}^{\infty}c_{n}e^{i[z(y-y)+ny]}$$ Which then gives us the common result of the original problem $$\int dx f(x)\delta(x-y)=\sum_{n=-\infty}^{\infty}c_{n}e^{iny}=f(y)$$ Now, to progress from here we need to introduce yet another definition for the Dirac delta ##\delta(n)=\sum^{\infty}_{m=-\infty}e^{i2\pi nm}## we now multiple this by the new Fourier series giving $$\sum_{n=-\infty}^{\infty}c_{n}e^{iny}\sum^{\infty}_{m=-\infty}e^{i2\pi nm}=\sum^{\infty}_{m=-\infty}\sum_{n=-\infty}^{\infty}c_{n}e^{in(y+2\pi m)}=\sum^{\infty}_{m=-\infty}f(y+2\pi m)$$
 
Last edited:
  • Like
Likes   Reactions: Abhishek11235

Similar threads

Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
19
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
7
Views
2K
  • · Replies 15 ·
Replies
15
Views
4K
Replies
1
Views
2K
Replies
2
Views
2K