Distribution of two independent exponential random variables

lizzyb
Messages
167
Reaction score
0
Q: If X_1 and X_2 are independent exponential random variables with respective parameters \lambda_1 and \lambda_2, find the distribution of Z = X_1 / X_2.

Discussion

The best method to attack this problem apparent to me is coming up with a cumulative distributive function for Z and then differentiating it.

Work Completed So Far
(note: I don't mean for anyone to check if I did my math right I'm just wondering if I'm going about solving the question right)

F_Z (a) = P\{ Z \leq a \} = P\{ X_1 / X_2 \leq a \} = P \{ X_1 \leq a X_2 \}
\int_0^\infty \int_0^{a x_2} \lambda_1 e^{- \lambda_1 x_1} dx_1 \lambda_2 e^{- \lambda_2 x_2} dx_2 = \lambda_1 \lambda_2 \int_0^\infty e^{\lambda_2 x_2} dx_2 \left[ -\frac{1}{\lambda_1} e^{-\lambda_1 x_1} \right]^{a x_2}_0 = - \lambda_2 \int_0^\infty e^{- \lambda_2 x_2} dx_2 ( e^{-\lambda_1 a x_2} - 1 )

= \lambda_2 \int_0^\infty e^{- \lambda_2 x_2} dx_2 -\lambda_2 \int_0^\infty e^{-\lambda_2 x_2 - \lambda_1 a x_2} dx_2 = \lambda_2 \int_0^\infty e^{- \lambda_2 x_2} dx_2 - \lambda_2 \int_0^\infty e^{-x_2(\lambda_2 + \lambda_1 a)} dx_2

= \lambda_2 ( - \frac{1}{\lambda_2} ) \left[ e^{- \lambda_2 x_2 } \right]_0^\infty - \lambda_2 \frac{-1}{\lambda_2 + \lambda_1 a} \left[ e^{-x_2(\lambda_2 + \lambda_1 a) \right]_0^{\infty} = 1 - \frac{\lambda_2}{\lambda_2 + \lambda_1 a}

So f_{X_1/X_2}(a) = f_Z(a) = \frac{d F_Z(a)}{da} = \frac{\lambda_1 \lambda_2}{(\lambda_1 a + \lambda_2)^2}

Does this look like I'm doing it right?

Thanks.
 
Last edited:
Physics news on Phys.org
I'm not an expert in this, but your reasoning all makes sense to me and your math does check out.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top