Calculate Div & Curl from V=Kyi-Kxj

  • Thread starter Thread starter laforzadiment
  • Start date Start date
  • Tags Tags
    Curl Divergence
laforzadiment
Messages
12
Reaction score
0
Determine Div & Curl from a given vector field

V=Kyi-Kxj

How do I format this?

It's been a while since I've done this and every divergence and curl example I look up has the format V(x,y,z)={V1(x,y,z);V2(x,y,z);V3(x,y,z)}

Should I reformat my V to be V{x,y}={V1(x,y);V2(x,y)}={Ky,-Kx} because of the unit vectors i and j?

The Attempt at a Solution



I think the above mentioned method is the correct way of reformatting it but doing it that way means dV1/dx=0 and dV2/dy=0 so my entire divergence is 0 when summed together. Just wanted to check.
 
Physics news on Phys.org
You're correct. The divergence is zero.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top