Double integral to calculate area

PhysDrew
Messages
64
Reaction score
0
Please ignore this thread (problems with Latex and the question looks like a jumbled mess!)
 
Last edited:
Physics news on Phys.org
Hi PhysDrew! :smile:

There's a LaTeX preview page (which Borek :smile: told me about) at https://www.physicsforums.com/mathjax/test/preview.html" :wink:
 
Last edited by a moderator:
Nice one thanks for that!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top