- 42,639
- 10,428
Writing ##y=r \tan(\theta)## and c=a/r:
##\int \frac{rady}{(y^2+r^2)(y^2+r^2+a^2)^\frac 12}=\int \frac{c.d\theta}{(c^2+\sec^2(\theta))^\frac 12}##
##=\int \frac {c.d\sin(\theta)}{(1+c^2\cos^2(\theta))^\frac 12}##
writing s for sin(theta) and f2 for a2/(a2+r2):
##=\int \frac{f ds}{(1-f^2s^2)^\frac 12}##
Writing s=sin(φ)/f:
##=\int d\phi=[\phi]##
Then it is just a matter of unwrapping all the substitutions.
##\int \frac{rady}{(y^2+r^2)(y^2+r^2+a^2)^\frac 12}=\int \frac{c.d\theta}{(c^2+\sec^2(\theta))^\frac 12}##
##=\int \frac {c.d\sin(\theta)}{(1+c^2\cos^2(\theta))^\frac 12}##
writing s for sin(theta) and f2 for a2/(a2+r2):
##=\int \frac{f ds}{(1-f^2s^2)^\frac 12}##
Writing s=sin(φ)/f:
##=\int d\phi=[\phi]##
Then it is just a matter of unwrapping all the substitutions.