Electric Field Calculations: Speed and Zero Points | Help Needed

AI Thread Summary
The discussion centers on two main questions regarding electric field calculations. The first question involves determining the speed of a particle moving parallel to an electric field, where the user struggles with integrating the electric field and equating it to kinetic energy, resulting in incorrect velocity calculations. The second question addresses finding points where the electric field is zero between a positive and a negative charge, with the user encountering issues when applying the quadratic formula and understanding the resulting equations. Participants suggest clarifying the integration bounds and confirm that the equations should simplify correctly. The user expresses a need for assistance in resolving these calculations.
cnugrl
Messages
3
Reaction score
0
I'm not sure if this has been asked, but i am in major need of help. i have 2 questions. first is determining the speed of a particle when the speed is parallel to the electric field. i talked to my prof. and he suggested finding the energy, U, and by integrating E with respect to z, by doing so, that left me with E*z from Zinitial (1-cos(theta)*L) to Zfinal(0). after doing this, i st this equal to 1/2 mv^2. to solve for the velocity, however, i am not getting the correct answer. :mad: and I'm getting frustrated. does anyone know where i am going wrong?

my second question is finding finite value(s) where an electric field is zero. by having a +q charge at the orgin and a -2q charge at x=5.8m. my professor told me to use kq/r^2 and where q is and q or -2q and r is x and x-d respectively where d is 5.8 m. i solving and put the equation = 0, and used the quadratic formula to get the answer. However, i am not getting this correct, when i solve for x i get x^2+2xd-d^2. i have used various other ways of trying to get this answer correct, by changing the signs and and i am still getting incorrect answers. I need to do the same with electric potential, but i do not understand how i can get 2 answers from a linear equation. i am getting d-3x where d =5.8 m. :confused:
if anyone could help, i would appreciate it so much
 
Physics news on Phys.org
cnugrl said:
I'm not sure if this has been asked, but i am in major need of help. i have 2 questions. first is determining the speed of a particle when the speed is parallel to the electric field. i talked to my prof. and he suggested finding the energy, U, and by integrating E with respect to z, by doing so, that left me with E*z from Zinitial (1-cos(theta)*L) to Zfinal(0). after doing this, i st this equal to 1/2 mv^2. to solve for the velocity, however, i am not getting the correct answer. :mad: and I'm getting frustrated. does anyone know where i am going wrong?


Who's "Z"...?

The equation is:
m\frac{d\vec{v}}{dt}=q\vec{E}

If the acceleration has the sense with the velocity (the sense of the acc.is the same with the one of the electric field for a positively cherged particle),then project the previous relation on an axis and integrate wrt to corresponding limits...

cnugrl said:
my second question is finding finite value(s) where an electric field is zero. by having a +q charge at the orgin and a -2q charge at x=5.8m. my professor told me to use kq/r^2 and where q is and q or -2q and r is x and x-d respectively where d is 5.8 m. i solving and put the equation = 0, and used the quadratic formula to get the answer. However, i am not getting this correct, when i solve for x i get x^2+2xd-d^2. i have used various other ways of trying to get this answer correct, by changing the signs and and i am still getting incorrect answers. I need to do the same with electric potential, but i do not understand how i can get 2 answers from a linear equation. i am getting d-3x where d =5.8 m. :confused:
if anyone could help, i would appreciate it so much

No,on normal basis it should reduce to a quadratic...

Daniel.
 
Z is the limit bounds...initial to final. plus, i was using it as a variable to integrate on
 
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top