Electricity and Magnetism Question (Related to circuits). .

AI Thread Summary
A 1.0 E -6 F capacitor charged to 10.0 micro C is connected to a 1.0 H inductor, prompting a discussion on comparing their potential energies at t = 10 seconds. Participants express uncertainty about the circuit configuration, questioning whether the inductor is in series or parallel with the capacitor. The relationship between potential energy, voltage, and capacitance is highlighted, with formulas provided for calculating voltage. The impact of circuit configuration on energy decay is also considered, noting that the decay constant may be swift. The conversation emphasizes the need for clarity on the circuit setup to accurately assess energy comparisons.
Partap03
Messages
3
Reaction score
0
A 1.0 E -6 F capacitor has a charge of 10.0 micro C. It is connected to a 1.0 H inductor at t = 0. Compare the potential energy of the capacitor to the potential energy of the inductor at t = 10s. Which energy is greater?
 
Physics news on Phys.org
Partap03 said:
A 1.0 E -6 F capacitor has a charge of 10.0 micro C. It is connected to a 1.0 H inductor at t = 0. Compare the potential energy of the capacitor to the potential energy of the inductor at t = 10s. Which energy is greater?

Welcome to PF.

Connected how?

And what are your thoughts on it?
 
First of all thanks.

My thoughts

I know that potential energy is basically voltage across each component.
Also, C = Q / (change in V) ; C is the capacitance, Q is the charge, and V is volts.
solving for change in V and we get
V = Q / C

Am I going in the right direction?
 
Partap03 said:
First of all thanks.

My thoughts

I know that potential energy is basically voltage across each component.
Also, C = Q / (change in V) ; C is the capacitance, Q is the charge, and V is volts.
solving for change in V and we get
V = Q / C

Am I going in the right direction?

First of all I don't know how it's connected. Is the inductor in || to the capacitor? What is the circuit?
 
LowlyPion said:
First of all I don't know how it's connected. Is the inductor in || to the capacitor? What is the circuit?

That's all the problem says. Let's assume that it is in series then how would I approach the problem?
 
Partap03 said:
That's all the problem says. Let's assume that it is in series then how would I approach the problem?

If it is in series then I think it matters what the rest of the circuit would be.

If it is in || then one is a short to the other isn't it?

Isn't the decay constant pretty swift?
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top