Electromagnetic Induction (Flux linkage)

AI Thread Summary
The discussion revolves around calculating magnetic flux and flux linkage for a rectangular coil rotating in a magnetic field. The coil dimensions were initially miscalculated due to incorrect unit conversion, but the correct area was later established. The minimum magnetic flux occurs at an angle θ of 0 degrees, while the maximum flux linkage is at 90 degrees. The calculations for magnetic flux at θ = 30 degrees were adjusted accordingly, confirming the values. The final consensus affirms the correctness of the assumptions regarding the angles and their effects on magnetic flux.
JosephF
Messages
14
Reaction score
0
Apologies for numerous posts today, I'm trying to catch up from work I missed last term, and my uni is on holiday at the moment so can't get help from lecturers.

I've been set the following which I think I've got correct, but not 100%. Am I right in calculating the area in m2?

Homework Statement



2. A rectangular coil measuring 20mm by 35mm and having 650 turns is rotating about a horizontal axis which is at right angles to a uniform magnetic field of flux density 2.5x10-3T. The plane of the coil makes an angle θ with the vertical, as shown in the diagrams.


(i) State the value of θ when the magnetic flux through the coil is a minimum.
(ii) Calculate the magnetic flux passing through the coil when θ is 30o.
(iii) What is the maximum flux linkage through the coil as it rotates?


Homework Equations



ΔΦ=NBAsinθ

The Attempt at a Solution



i) Φ is at a minimum when θ=0

ii) ΔΦ=650x(2.5x10-3)x(0.002x0.0035)sin30

=1.365x10-5sin30

=5.6875x10-6Wb

iii) Flux linkage is maximum when θ=90

ΔΦ=1.375x10-5sin90

=1.375x10-5Wb

Thanks,
 
Physics news on Phys.org
Almost, 1 m = 1000 mm, so 20 mm =20*10^-3m=0.02m. So you're a factor 100 off regarding the area.
 
3. The Attempt at a Solution

i) Φ is at a minimum when θ=0

ii) ΔΦ=650x(2.5x10-3)x(0.02x0.035)sin30

=1.1375x10-3sin30

=5.6875x10-4Wb

iii) Flux linkage is maximum when θ=90

ΔΦ=1.1375x10-3sin90

=1.1375x10-3Wb

-----------------

Ah, that was careless of me! Thanks for pointing it out. Is everything now correct. Am I right with my assumptions of min when θ=0 and max when θ=90?

Thanks,
 
Yes everything seems to be correct now. Your assumptions are easy to check. When theta is 0 the coil is parallel to the magnetic field so no field lines pass through the coil. When theta is 90 degrees the coil is perpendicular to the magnetic field and a maximum amount of field lines go through the coil.
 
That brilliant. Thanks again.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top