Electrostatic force between to spheres

AI Thread Summary
The discussion revolves around the electrostatic force between two solid half-charged insulating spheres. Participants analyze how the distance between the centers of charge affects the mutual force, referencing Coulomb's law. While one view suggests that flipping the larger half-sphere closer to the smaller one increases the force, another perspective argues that the net force remains the same. The challenge lies in accurately determining the center of charge for each configuration in three-dimensional space. Ultimately, the conversation highlights the complexities of calculating electrostatic forces in different arrangements.
oronanschel
Messages
13
Reaction score
0
given to solid half charged sphere Insulators.

In which state the mutual net force is bigger: A/B/the same

KNSdL.jpg
 
Physics news on Phys.org
No idea how to attempt it?
The force depends on two things. Look at the Coulomb force law formula to see what they are. You will find that one of them is the same for both arrangements, but the other is different. With some thought you can approximate that quantity for each situation and then the formula will tell you which results in the larger force.
 
if it was 2d then it an obv that B (because distance is shorter)
but i can't get a grasp of it 3d and could't compute either.

i tried to think what is the shape of the field of half sphere but
couldn't do it either.

the weird thing is that, the book argue that the net force is the same
and i think it is not
 
Going from A to B, you have flipped the large half-sphere so its center of charge is closer to the center of the smaller half-sphere. That will increase the force. Yes, it is difficult to figure out exactly where the center of charge is, but certainly it is in the interior of the hemisphere. That alone is sufficient to prove smaller distance for B, isn't it?
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top