Energy Principle and Nuclear Fission Rhenium HELP

AI Thread Summary
The discussion focuses on the fission process of Thorium-228, which occurs when it absorbs a neutron, resulting in two rhenium nuclei. The calculations involve determining the final speed of the rhenium nuclei after fission, their distance apart just after fission, and the radius of a rhenium nucleus. Participants are seeking assistance with specific calculations, particularly for parts b, c, and d of the problem, and clarifying the variables involved. The importance of maintaining significant figures in calculations is emphasized due to the precision required in nuclear physics.
coojoejotaro
Messages
1
Reaction score
0
Energy Principle and Nuclear Fission Rhenium HELP! ASAP

Homework Statement


For some isotopes of some very heavy nuclei, including nuclei of thorium, uranium, and plutonium, the nucleus will fission (split apart) when it absorbs a slow-moving neutron. Thorium-227, with 90 protons and 137 neutrons, can fission when it absorbs a neutron and becomes Thorium-228. The two fission fragments can be almost any two nuclei whose charges Q1 and Q2 add up to 90e (where e is the charge on a proton, e = 1.6multiply10-19 coulomb), and whose nucleons add up to 228 protons and neutrons (Th-228, formed from Th-227 plus a neutron). One of the possible fission modes involves nearly equal fragments, rhenium nuclei (Rh) each with electric charge Q1 = Q2 = 45e. The rest masses of the two rhenium nuclei add up to less than the rest mass of the original nucleus. (In addition to the two main fission fragments there are typically one or more free neutrons in the final state; in your analysis make the simplifying assumption that there are no free neutrons, just two rhenium nuclei.)

The rest mass of the Th-228 nucleus (formed from Th-227 plus a neutron) is 227.979 u (unified atomic mass units), and the rest mass of each of the two Rh-114 nuclei is 113.894 u, where 1 u = 1.66multiply10-27 kg (approximately the mass of one nucleon). In your calculations, keep at least 6 significant figures, because the calculations involve subtracting large numbers from each other, leaving a small difference. There are three states you should consider in your analysis:

1) The initial state of the Th-228 nucleus, before it fissions.
2) The state just after fission, when the two rhenium nuclei are close together, and momentarily at rest.
3) The state when the rhenium nuclei are very far away from each other, traveling at high speed.

(a) Calculate the final speed v, when the rhenium nuclei have moved very far apart due to their mutual electric repulsion. Keep at least 6 significant figures in your calculations. In your analysis it is all right to use the nonrelativistic formulas, but you then must check that the calculated v is indeed small compared to c. (The large kinetic energies of these rhenium nuclei are eventually dissipated into thermal energy of the surrounding material. In a nuclear reactor this hot material boils water and drives an electric generator.)
(b) Using energy considerations, calculate the distance between centers of the rhenium nuclei just after fission, when they are momentarily at rest. Keep at least 6 significant figures in your calculations.
(c) A proton or neutron has a radius r of roughly 1multiply10-15 m, and a nucleus is a tightly packed collection of nucleons. Therefore the volume of the nucleus, (4/3)piR3, is approximately equal to the volume of one nucleon, (4/3)pir3, times the number N of nucleons in the nucleus: (4/3)piR3 = N(4/3)pir3. So the radius R of a nucleus is about N1/3 times the radius r of one nucleon. More precisely, experiments show that the radius of a nucleus containing N nucleons is (1.3multiply10-15 m)multiplyN1/3. What is the radius of a rhenium nucleus?
(d) You could make a careful scale drawing on paper of the two rhenium nuclei in part (b), just after fission, and label the drawing with the distances that you calculated in parts (b) and (c). If the two rhenium nuclei are nearly touching, this would be consistent with our model of fission, in which the Th-228 nucleus fissions into two pieces that are initially nearly at rest. How big is the gap between the surfaces of the two nuclei? (If you have done the calculations correctly, you will indeed find that the gap is a rather small fraction of the center-to-center distance, which means that our model for the fission process is a pretty good model.)


Homework Equations


U = (9e9) (q1q2)/2
K = (1/2)mv^2

The Attempt at a Solution


I solved for the 3 which is 6.30344986e-15m. I tried to solve for A by setting this equation U = K; (9e9) (q1q2)/2 = (1/2)mv^2; however, I don't know what "r" is?
I need help Thank you
 
Physics news on Phys.org


did u ever get b,c,or d?
 


can ne1 help with part b i tried q1*q2/u *culombs=r
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top