Equations of motion of a system with non holonomic constraints

DannyJ108
Messages
23
Reaction score
2
Homework Statement
A system with 2 degrees of freedom has 2 non holonomic constraints. Determine the equations of motion that can describe the movement of such system
Relevant Equations
##A_1 dq_1 +Cdq_3 + Ddq_4 = 0##
##A_2 dq_1 + Bdq_2 = 0##
Hello,

I have a system with 2 degrees of freedom with 2 non-holonomic constrains that can be expressed by:##A_1 dq_1 +Cdq_3 + Ddq_4 = 0##

##A_2 dq_1 + Bdq_2 = 0##Being ##q_1, q_2, q_3## and ##q_4## four generalized coordinates that can describe the movement of the system. And ##A_1, A_2, B, C## and ##D## independent constants.I have to obtain the necessary equations to completely describe the system's motion and interpret the physical meaning of the different equations.How should I proceed? I think I should use Lagrange multipliers, but I don't know where to start.Thanks for the help.
 
Physics news on Phys.org
If A,B,C,D are constants then the constraints are holonomic. Integrate these equations:
$$ A_1 q_1+Cq_3+Dq_4=const_1,\quad A_2q_1-Bq_2=const_2$$ express from here for example ##q_1,q_2## and get the system with generalized coordinates ##q_3,q_4##
 
  • Like
Likes etotheipi
wrobel said:
If A,B,C,D are constants then the constraints are holonomic. Integrate these equations:
$$ A_1 q_1+Cq_3+Dq_4=const_1,\quad A_2q_1-Bq_2=const_2$$ express from here for example ##q_1,q_2## and get the system with generalized coordinates ##q_3,q_4##

The homework statement specifically says that the constants are non holonomic, so approaching them as holonomic would be wrong I think.
Also, I didn't mention it, but it says that ##A_1, A_2, B, C## and ##D## are constants independent of the generalized coordinates. I'm not sure if it makes a difference in the way to resolve the exercise.
I'll try the approach you mentioned.
 
DannyJ108 said:
Also, I didn't mention it, but it says that and are constants independent of the generalized coordinates
you have said this:
DannyJ108 said:
Homework Statement:: A system with 2 degrees of freedom has 2 non holonomic constraints. Determine the equations of motion that can describe the movement of such system
Relevant Equations:: A1dq1+Cdq3+Ddq4=0
A2dq1+Bdq2=0

. And and independent constants.
By the way the rang of constraints matrix must be 2
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top