GoodKopp
- 1
- 0
Homework Statement
Give a simple estimate of the ratio of decay rates for K^+ \rightarrow e^+ \nu_e / K^+ \rightarrow \mu^+ \nu_\mu.
Homework Equations
Fermi's Golden Rule for decay width \Gamma = \hbar W = 2\pi (dn/dE_f)|M_{if}|^2.
For comparison, from the PDG, \Gamma / \Gamma_i are 1.55 \pm 0.07 \times 10^{-5} and 63.44 \pm 0.14 for K^+ \rightarrow e^+ \nu_e and K^+ \rightarrow \mu^+ \nu_\mu, respectively.
The Attempt at a Solution
\frac{\Gamma (K^+ \rightarrow e^+ \nu_e)}{\Gamma (K^+ \rightarrow \mu^+ \nu_\mu)} = \frac{\frac{dn}{dE} e^+ \nu_e}{\frac{dn}{dE} \mu^+ \nu_\mu}
\frac{dn}{dE} = \frac{dn}{dp} \frac{dp}{dE}
Am I going about this the right way? Where do I go from here?
Last edited: