Evaluate Complex Contour Integrals

bugatti79
Messages
786
Reaction score
4

Homework Statement


Evaluate each of the following by Cauchy's Integral formula

a)## \int_cj \frac{\cos z}{3z-3\pi} dz## c1: |z|=3, c2:|z|=4

b) ##\int_c \frac{e^{3z}}{z-ln(2)} dz## c=square with corners at ##\pm(1\pm i)##



Homework Equations


##f(z_0)=\frac{1}{2 \pi i}\int_c \frac{f(z)}{z-z_0}##


The Attempt at a Solution



a) ## \int_{c_j} \frac{\cos z}{3z-3\pi} dz## c1: |z|=3, c2:|z|=4

##\frac{1}{3}\int_{c1} \frac{\cos z}{z- \pi} dz =0## since ##\pi## lies outside c1 and hence ##\frac{\cos z}{z- \pi}## is analytic on and inside c1

##\frac{1}{3}\int_{c1} \frac{\cos z}{z- \pi} dz = \frac{1}{3} (2\pi i) \cos (\pi)= -\frac{2}{3} \pi i## since ##\pi## lies inside c2




b) ##\int_c \frac{e^{3z}}{z-ln(2)} dz## c=square with corners at ##\pm(1\pm i)##

##\int_c \frac{e^{3z}}{z-ln(2)} dz=2 \pi i e^{3 ln(2)}=2^4 \pi i##...?

Thanks
 
Physics news on Phys.org
Looks ok to me.
 
jackmell said:
Looks ok to me.

bugatti79 said:
b) ##\int_c \frac{e^{3z}}{z-ln(2)} dz## c=square with corners at ##\pm(1\pm i)##

##\int_c \frac{e^{3z}}{z-ln(2)} dz=2 \pi i e^{3 ln(2)}=2^4 \pi i##...?

Thanks

In b) if we had ##\int_c \frac{e^{3z}}{(z-ln(2))^3} dz##

We'd get the same answer because we have ##(z-ln(2))^3=0 \implies z-ln(2)=0##..?
 
No.
f^{(n)}(a)=\frac{n!}{2\pi i}\oint \frac{f(z)}{(z-a)^{n+1}}dz
 
bugatti79 said:
In b) if we had ##\int_c \frac{e^{3z}}{(z-ln(2))^3} dz##

We'd get the same answer because we have ##(z-ln(2))^3=0 \implies z-ln(2)=0##..?

jackmell said:
No.
f^{(n)}(a)=\frac{n!}{2\pi i}\oint \frac{f(z)}{(z-a)^{n+1}}dz

## \displaystyle \oint \frac{e^{3z}}{(z-ln(2))^{3}}dz=\frac{2\pi i}{3!} (3e^{3(ln 2)})=2^4 \pi i##..which is the same as original q part b)?
 
jackmell said:
f^{(n)}(a)=\frac{n!}{2\pi i}\oint \frac{f(z)}{(z-a)^{n+1}}dz

When I plug your integral into that formula, I get:

\frac{d^2}{dz^2}\left(e^{3z}\right)\biggr|_{z=\ln(2)}=\frac{2!}{2\pi i} \oint \frac{e^{3z}}{(z-\ln(2))^3}dz

or

\oint \frac{e^{3z}}{(z-\ln(2))^3}dz=72\pi i

Also, try and learn to check them in Mathematica:

Code:
NIntegrate[(Exp[3*z]/(z - Log[2])^3)*2*I*
    Exp[I*t] /. z -> 2*Exp[I*t], {t, 0, 2*Pi}]
N[72*Pi*I]


-1.4210854715202004*^-14 + 226.19467105847158*I

0. + 226.1946710584651*I
 
jackmell said:
When I plug your integral into that formula, I get:

\frac{d^2}{dz^2}\left(e^{3z}\right)\biggr|_{z=\ln(2)}=\frac{2!}{2\pi i} \oint \frac{e^{3z}}{(z-\ln(2))^3}dz

or

\oint \frac{e^{3z}}{(z-\ln(2))^3}dz=72\pi i

Also, try and learn to check them in Mathematica:

Code:
NIntegrate[(Exp[3*z]/(z - Log[2])^3)*2*I*
    Exp[I*t] /. z -> 2*Exp[I*t], {t, 0, 2*Pi}]
N[72*Pi*I]


-1.4210854715202004*^-14 + 226.19467105847158*I

0. + 226.1946710584651*I

I didnt differentiate twice!

Thank you!
 
Back
Top