Evaluate Surface Integral: Solve x^2 + z^2 = 9, x=0, y=0, z=0 and y=8

AI Thread Summary
The discussion focuses on evaluating the surface integral of the vector field A=(6z, 2x+y, -x) over a region bounded by the cylinder x^2 + z^2 = 9 and the planes x=0, y=0, z=0, and y=8. The application of Gauss' Theorem leads to the conclusion that the divergence of A is 1, simplifying the integral to the volume of the region. The volume is calculated as pi*r^2*h, where r^2=9 and h=8, resulting in 18pi. The quarter factor arises because the region is effectively a quarter of the cylinder due to the constraints imposed by the bounding planes. Understanding these limits clarifies the origin of the quarter factor in the final answer.
Hoofbeat
Messages
48
Reaction score
0
Could someone take a look at this please? Thanks

=====
Q. Evaluate Integral A.n dS for the following case:
A=(6z, 2x+y, -x) and S is the entire surface of the region bounded by the cylinder x^2 + z^2 = 9, x=0, y=0, z=0 and y=8.
=====

Using Gauss' (or Divergence) Theorem:

Integral A.n dS = Integral Div A dV

Div A = 1, therefore

Integral 1 dV

When I last did this question, I said that dV = pi*r^2*h where r^2=9 and h=8. However, I've also got a factor of 1/4 to give me the final answer of 18pi. Where the hell did the quarter come from?! I'm guessing it has something to do with the limits and the fact that it's bounded by x=0, y=0 and z=0, but I don't understand why! Anyone offer some advice?!
 
Physics news on Phys.org
Hoofbeat said:
Where the hell did the quarter come from?! I'm guessing it has something to do with the limits and the fact that it's bounded by x=0, y=0 and z=0, but I don't understand why! Anyone offer some advice?!

You think it right. The bases of the cylinder are parallel to the (xy) plane at y =0 and y=8. The (z,y) plane at x=0 cuts the cylinder into half. The other plane, (x,y) at z=0 does the same, so you have a quarter of a cylinder of length h=8.

ehild
 
Last edited:
thanks ever so much! :)
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top