Evaluate the following integral from a physics textbook

dRic2
Gold Member
Messages
887
Reaction score
225
Homework Statement
Hi, I would like to evaluate the following integral from a physics textbook:

$$-P\int d^3 k \theta (1 - k) \frac 2 { qk \cos \phi + \frac 1 2 q^2 }$$

(with P I mean the Cauchy principal value and ##\theta(x)## is the step function)
Relevant Equations
.
Using spherical coordinates I can write ##d^3 k = 2\pi k^2 \sin \phi dk d \phi## (where I've already preformed the integration along the azimuthal angle, yielding the factor ##2 \pi##). Btw I'm sorry for my unfortunate notation: usually ##\phi## is the azimuthal angle, but here it is the polar angle because I used ##\theta## for the step function...

Using the substitution ##\cos \phi = \eta## I can re-write the integral as:

$$- 4 \pi P\int_0^1 dk k^2 \int_{-1}^{1} d\eta \frac {qk} { qk \eta + \frac 1 2 q^2 } \frac {1} {qk}$$

(where I have multiplied by ##\frac {qk}{qk}## and used ##\theta(1-k)## to modify the limits of integration of the variable ##k##). Ok, so I do not really know much about the theory of Cauchy principal value, so I treated this as a normal integral and I got (integrating over ##\eta##):

$$- 4 \pi P\int_0^1 dk\log \left( \frac {qk + \frac 1 2 q^2 } {-qk + \frac 1 2 q^2 } \right) \frac {k} {q} = - 4 \pi P\int_0^1 dk\log \left({k + \frac 1 2 q }\right) \frac {k} {q} + 4 \pi P\int_0^1 dk\log \left( {-k + \frac 1 2 q } \right) \frac {k} {q}$$

(in the last step I simplified a ##q## because both ##k## and ##q## are positively defined quantities (sorry for not mentioning it earlier). So here I thought to use

$$ \int k \log(k+a) = k \int \log(k+a) - \int \log(k+a) = (k-1)\int \log(k+a) = ...$$ and from now on it's mostly just algebra.

So my problem is that the solution should be this one (never mind all the missing constants in front of the integral):

$$\left[ -1 + \frac 1 q (1 - \frac 1 4 q^2) \log \left| \frac {2 - q} {2 + q} \right| \right]$$

And my question is: how am I supposed to get the absolute value in the logarithm ? It can't follow from just algebra... there is something from the theory I'm missing right?

Thanks
Ric
 
  • Like
Likes Delta2
Physics news on Phys.org
Is it something as basic as ##\displaystyle \int {\frac{1}{x}} dx = \log|x| + C ## ?
 
Last edited:
  • Like
Likes dRic2
Mhm I'm embarrassed that I didn't thought of that, thanks!

BTW integrating ## \log |x+a| ## seems a pain... I'm going to see what I can do
 
dRic2 said:
Mhm I'm embarrassed that I didn't thought of that, thanks!

BTW integrating ## \log |x+a| ## seems a pain... I'm going to see what I can do
First, try integrating ##\log|x |##, then go for integrating ## \log |x+a| ## .

It could be done by trial & error.

Better: It can be done by Integration by Parts. \ _ |
You might say, What parts are possible in ##\int \log|x |\ dx## ?
Seems like the only possibility is: Let ##u= \log|x |## and ##dv = dx##
Then ##du= \dfrac{1}{x} dx## and ##v = x## .​

Of course, you can look it up in table of integration formulas.
 
  • Like
Likes jim mcnamara
Sorry I was traveling yesterday so I couldn't try. I'll be back home on Monday.

BTW I know how to integrate log(x)... It is the absolute value that annoys me... It might be actually easier, but I'm always suspicious whenever I encounter an absolute value because it always screw up the domain of the function :D (this times seems to make it easier though)

Ps: the funniest way to integrate log(x) is to integrate by parts ##\int (1)* \log(x) = x \log(x) - \int x \frac 1 x##
 
For example. Take the above example. It gets harder since the derivative of ##\log |x|## is no longer just ##\frac 1 x ## but instead ## sgn(x) \frac 1 x##. So the integral of ##\log |x| = x \log|x| - sgn(x)x## which depends of the limit of integration since sgn(x) could be 1 or -1... It is a pain... at least to me :D
 
dRic2 said:
For example. Take the above example. It gets harder since the derivative of ##\log |x|## is no longer just ##\frac 1 x ## but instead ## sgn(x) \frac 1 x##.
This isn't correct. ##\log \lvert x \rvert## monotonically decreases on the interval ##(-\infty,0)##, so its derivative should be negative, which is exactly what ##1/x## gives you.
 
  • Like
Likes dRic2
Sorry I messed up. It is ##sgn(x) \frac 1 {|x|} = \frac 1 x##. So I guess I was worring for nothing...
 
dRic2 said:
So here I thought to use

∫klog(k+a)=k∫log(k+a)−∫log(k+a)=(k−1)∫log(k+a)=...∫klog⁡(k+a)=k∫log⁡(k+a)−∫log⁡(k+a)=(k−1)∫log⁡(k+a)=...​
\int k \log(k+a) = k \int \log(k+a) - \int \log(k+a) = (k-1)\int \log(k+a) = ... and from now on it's mostly just algebra.
(Sorry about the latext)

This is nonsense. I apologize. I've made a mistake forgetting to integrate log(k+a) in the second part. Just wanted to be clear for other people interested in the post. A different integration by parts is needed:
$$\int x log(x+a) = x^2 log(x+a) - \int \frac {x^2} {x+a}$$
The one proceeds by splitting x^2/(x+a) into x - (ax)/(x+a) and so on...
 
Back
Top