Expectation value and momentum for an infinite square well

Matt Q.
Messages
5
Reaction score
0

Homework Statement

√[/B]
A particle in an infinite square well has the initial wave function:

Ψ(x, 0) = A x ( a - x )

a) Normalize Ψ(x, 0)

b) Compute <x>, <p>, and <H> at t = 0. (Note: you cannot get <p> by differentiating <x> because you only know <x> at one instance of time)

Homework Equations

The Attempt at a Solution


For part a, I figured out A = \sqrt{30 / a^5}

I'm sort of confused for part b. For <x>, I set up the integral like this:

\int_{0}^{a}x Ψ(x, 0)^2 dx

And got \frac{a^6 A^2}{60}, but I'm not sure if I got it right.

For <p> and <H>, I don't know how to set up these integrals. How would I set up these integrals? I don't need you to solve it for me, I just wanted to know how to set them up.

Thank you for reading and helping.
 
Physics news on Phys.org
How does the momentum operator look like in position space, i.e. ##p_x\psi(x) =\ldots##?
 
Matt Q. said:
For <x>, I set up the integral like this:

\int_{0}^{a}x Ψ(x, 0)^2 dx

And got \frac{a^6 A^2}{60}, but I'm not sure if I got it right.
If you plug in your result for ##A##, you get ##\langle x \rangle = \frac a2##. Given the symmetry of ##\Psi(x,0)##, does the answer seem reasonable?
 
blue_leaf77 said:
How does the momentum operator look like in position space, i.e. ##p_x\psi(x) =\ldots##?

I figured it out and got 0 for <p>. That seems reasonable right?

vela said:
If you plug in your result for ##A##, you get ##\langle x \rangle = \frac a2##. Given the symmetry of ##\Psi(x,0)##, does the answer seem reasonable?

Ah I didn't think of that. It makes sense.
 
I also figured out <H> which turns out to be ##\frac{5 h^2}{m a^2}## which seems pretty reasonable too right?
 
Matt Q. said:
I figured it out and got 0 for <p>. That seems reasonable right?
Yes.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top