Sci
- 2
- 0
Homework Statement
System of 2 particles with spin 1/2. Let
<br /> \vert + \rangle =<br /> \begin{pmatrix}<br /> 0 \\<br /> 1<br /> \end{pmatrix} \\<br /> \vert - \rangle =<br /> \begin{pmatrix}<br /> 1 \\<br /> 0<br /> \end{pmatrix}<br />
singlet state <br /> \vert \Phi \rangle = \frac{1}{\sqrt{2}} \Big( \vert + \rangle \otimes \vert - \rangle - \vert - \rangle \otimes \vert + \rangle \Big)<br />
observables:
<br /> (2 \vec{a} \vec{S}^1) \otimes 1 \\<br /> (2 \vec{a} \vec{S}^1) \otimes (2 \vec{b} \vec{S}^2)<br />
for arbitraty a,b
Homework Equations
<br /> S_x^i=<br /> \begin{pmatrix}<br /> 0 & 1\\<br /> 1 & 0<br /> \end{pmatrix}<br />
and similar for S_y and S_z
The Attempt at a Solution
I have to calculate
<br /> \langle \Phi \vert(2 \vec{a} \vec{S}^1) \otimes 1 \vert \Phi \rangle<br />
in the first task. Does the tensor product notation of Phi means that particle A is in state + and particle B is in state - or the other way round?
Does the 1 in the observable means that the state of B is simply ignored in the meaurement?
So does the first case simplify to
<br /> \langle + \vert a_1 \hat S_x +a_2 \hat S_y +a_3 \hat S_z \vert + \rangle -<br /> \langle - \vert a_1 \hat S_x +a_2 \hat S_y +a_3 \hat S_z \vert - \rangle<br />
and the expectation value becomes zero, as expected for the singlet state