# Exploring the Acceleration of a Projectile Motion Lab

• devilish_wit
In summary, the homework statement asks if the acceleration found through Vy vs. t graph should always be equal to -9.8 m/s^2. The answer is no, as the object was launched at an angle.f

## Homework Statement

Use your Vy versus t graph to determine the y-component of the acceleration of the puck. Should this be equal to the acceleration due to gravity (9.8 m/s)? Explain why it is or why it is not.

The acceleration we got from the Vy vs time graph is -1.90m/s^2. Should that have been the same with -9.8 m/s^2? Also just take note that the object was launched at a certain angle.

## The Attempt at a Solution

My answer is no because the platform at which the object was thrown was launched at an angle (?) I really can't explain it.

Should that have been the same with -9.8 m/s^2?
You don't give much detail of the experiment, but it sounds like it should have been much closer to g.
Please give a clear description of the set up and post the data you collected in a form that can be cut and pasted.

• CWatters

## Homework Statement

Use your Vy versus t graph to determine the y-component of the acceleration of the puck. Should this be equal to the acceleration due to gravity (9.8 m/s)? Explain why it is or why it is not.

The acceleration we got from the Vy vs time graph is -1.90m/s^2. Should that have been the same with -9.8 m/s^2? Also just take note that the object was launched at a certain angle.

## The Attempt at a Solution

My answer is no because the platform at which the object was thrown was launched at an angle (?) I really can't explain it.

As has been stated, no one could, or should, be able to answer this without you describing explicitly the nature of your experiment. After all, this "projectile" could have been launched on a slanted surface, etc... (since it was called a "puck").

Zz.

Poster has been reminded not to create multiple threads about the same question
Should the acceleration found through Vy vs. t graph be always equal to -9.8 m/s^2?

Does the angle of launch affect gravity?

What do you think and why?

And are you aware of the mathematical concepts of vectors and the horizontal and vertical components of a vector?

I guess the acceleration from Vy vs t should equal to 9.8 m/s^2, while the one you find from Vx vs t is 0m/s^2. So when you take those values and solve “a = square root of x^2 + y^2” it would equal to the gravitational acceleration 9.8 m/s^2.

I mean I’m not the best in physics that’s why I’m here to ask questions that need clarification.

• 