dikmikkel
- 160
- 0
Homework Statement
The potential inside a spherical shell is given by:
V_{-}(x,y,z)= \frac{V_0}{R^2}(6z^2-3x^2-3y^2)
P_n(\cos(\theta )) where \theta is the polar angle.
The potential on the surface carries a surface charge density \sigma. Besides this, ther's no other charges and no outher field. The potential is rotational symmetric around the z-axis inside and outside, and goes to 0 far away from the sphere.
b) express the potential inside the spherical shell using a LegendrePolynomial
Homework Equations
In spherical coordinates i have:
V(r,\theta ) = \sum\limits_{l=0}^{\infty}(A_lr^lP_l(\cos(\theta)) = V_0(\theta)
The Attempt at a Solution
This is how far i made it. Now i suppose i could multiply it with P_{l'}(\cos( \theta ))\sin(\theta) and integrate, but i can't figure out how to simplify it and extract the solution.
I'm aware that the functions' are orthogonal, but the integral of a sum is something I've never done before.
Last edited: