Hey kids,(adsbygoogle = window.adsbygoogle || []).push({});

The question I'm having trouble with (this time) is as follows:

Show that the Fermi-Dirac distribution function,

[tex] f_{FD}(E)=\frac{1}{e^{(\frac{E-E_f}{kT})}+1} [/tex]

Has the following functional form at T= 0K

(see attachment)

Now, the first thing that screamed at me was the division by T in the exponential bit. If T=0, what is going on!?

The obvious things are:

E>Ef then f(E) = 0

and

E<Ef then f(E) = 1.

I'm just really confused at how I can show that the function has that form at T=0K

Any ideas?

Cheers

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Fermi-Dirac Statistics

**Physics Forums | Science Articles, Homework Help, Discussion**