Find a transition matrix from bases problem

proctortom
Messages
12
Reaction score
0

Homework Statement



I have 2 bases, a = {1, x, x^2} and b = {-2 - 2x + 3x^2 , 1 + 2x - x^2 , -1 - x + 2x^2} of P2.

Find the transition matrix Pab.

How is this done??

Homework Equations


Since this is Linear Algebra, there aren't really any relevant "Equations" as such. More logic based. Right?

The Attempt at a Solution



I am quite muddled. Best I could get was to make [v]s = [1; 1; 1] (Thats a vertical matrix of 1s)

Not quite sure where to go from here.
 
Physics news on Phys.org
You are mapping form a 3 dimensional space to a 3 dimensional space (actually P2 to itself but using different bases so you are treating P2 as two different spaces) so you want a 3 by 3 matrix.

Any vector in P2 is of the form ux^2+ vx+ w so can be written as u(1)+ v(x)+ w(x^2) where I have put parentheses to show the basis vectors. Changing to basis b would mean finding numbers p, q, and r so that ux^2+ vx+ w= p(-2 - 2x + 3x^2)+ q(1 + 2x - x^2)+ r(-1 - x + 2x^2).

The simplest way to find the transition matrix is to determine how to write each of the vectors in basis a in terms of basis b and use those coefficients as columns in the matrix.
For example, the first vector in basis a is "1" so we want to find p, q, and r such that
1= p(-2 - 2x + 3x^2)+ q(1 + 2x - x^2)+ r(-1 - x + 2x^2). That is the same as
1= -2p- 3px+ 3px^2+ q+ 2qx- qx^2- r- rx+ 2rx^2= (-2p +q- r)+ (-3p+ 2q- r)x+ (3p- q+ 2r)x^2. For that to be true for all x we must have -2p+ q- r= 1, -3p+ 2q- r= 0, and 3p- q+ 2r= 0. Solve those three equations for p, q, and r.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top