Finding angular speed & KE using moment of inertia?

AI Thread Summary
The discussion revolves around calculating angular speed and kinetic energy for two skaters rotating around a pole after initially approaching each other. The skaters, each weighing 48.1 kg, start 2.90 m apart and have opposite velocities of 1.61 m/s. Initial calculations for radius, angular speed, and kinetic energy are correct, yielding values of 1.45 m, 1.11 rad/s, and 125 J, respectively. However, when the skaters pull closer to 1.82 m, the user struggles with recalculating angular speed and kinetic energy, mistakenly assuming speed remains constant. The key takeaway is that angular momentum is conserved, which is crucial for solving the problem correctly.
rockchalk1312
Messages
38
Reaction score
0
In the figure, two skaters, each of mass 48.1 kg, approach each other along parallel paths separated by 2.90 m. They have opposite velocities of 1.61 m/s each. One skater carries one end of a long pole of negligible mass, and the other skater grabs the other end as she passes. The skaters then rotate about the center of the pole. Assume that the friction between skates and ice is negligible. What are (a) the radius of the circle, (b) the angular speed of the skaters, and (c) the kinetic energy of the two-skater system? Next, the skaters each pull along the pole until they are separated by 1.82 m. What then are (d) their angular speed and (e) the kinetic energy of the system?

ω=v/r
I=Ʃmr2
K=1/2Iω2

a) I found the radius obviously by doing 2.90/2=1.45m
b) ω =1.61m/s / 1.45m = 1.11rad/s
c) I = 2(48.1kg)(1.45m)2=202.3 kgm2
K = (1/2)(202.3)(1.11)2=125 J

a, b and c were all the correct answers but then when I tried to solve d and e the exact same way the answers are incorrect. Isn't the only thing you have to change the fact that the radius is now 1.82/2=.91m?

d) ω=1.61m/s / .91m = 1.77 rad/s
e) I = 2(48.1kg)(.91m)2=79.66kgm2
K = (1/2)(79.66)(1.77)2=125 J

d and e were incorrect. What am I doing wrong?
 

Attachments

  • Screen Shot 2013-04-06 at 11.04.02 PM.png
    Screen Shot 2013-04-06 at 11.04.02 PM.png
    3.8 KB · Views: 619
Physics news on Phys.org
rockchalk1312 said:
In the figure, two skaters, each of mass 48.1 kg, approach each other along parallel paths separated by 2.90 m. They have opposite velocities of 1.61 m/s each. One skater carries one end of a long pole of negligible mass, and the other skater grabs the other end as she passes. The skaters then rotate about the center of the pole. Assume that the friction between skates and ice is negligible. What are (a) the radius of the circle, (b) the angular speed of the skaters, and (c) the kinetic energy of the two-skater system? Next, the skaters each pull along the pole until they are separated by 1.82 m. What then are (d) their angular speed and (e) the kinetic energy of the system?

ω=v/r
I=Ʃmr2
K=1/2Iω2

a) I found the radius obviously by doing 2.90/2=1.45m
b) ω =1.61m/s / 1.45m = 1.11rad/s
c) I = 2(48.1kg)(1.45m)2=202.3 kgm2
K = (1/2)(202.3)(1.11)2=125 J

a, b and c were all the correct answers but then when I tried to solve d and e the exact same way the answers are incorrect. Isn't the only thing you have to change the fact that the radius is now 1.82/2=.91m?
It's not the same problem. How can it be solved the same way?

Why would the skaters speed remain the same as before?
d) ω=1.61m/s / .91m = 1.77 rad/s
e) I = 2(48.1kg)(.91m)2=79.66kgm2
K = (1/2)(79.66)(1.77)2=125 J

d and e were incorrect. What am I doing wrong?
Ask yourself, 'what is conserved as the skaters get closer together?'
 
SammyS said:
'what is conserved as the skaters get closer together?'

Angular momentum. Thanks, got it!
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...

Similar threads

Back
Top