- 1,753
- 143
Homework Statement
Water flows into a nozzle at 3.00 m/s at a pressure of 1.31*105Pa. What should the ratio of input to output diameter be if the flow is to remain steady? What is the flow speed at the exit?
Homework Equations
<br /> P_{{\rm{input}}} + \frac{{\rho v_{{\rm{input}}}^2 }}{2} = P_{{\rm{atmosphere}}} + \frac{{\rho v_{{\rm{output}}}^{\rm{2}} }}{2}<br />
A_1 v_1 = A_2 v_2
The Attempt at a Solution
My first guess is to simply say that a 1:1 input

<br /> \begin{array}{l}<br /> P_{{\rm{input}}} + \frac{{\rho v_{{\rm{input}}}^2 }}{2} = P_{{\rm{atmosphere}}} + \frac{{\rho v_{{\rm{output}}}^{\rm{2}} }}{2} \\ <br /> \\ <br /> P_{{\rm{input}}} + \frac{{\rho v_{{\rm{input}}}^2 }}{2} - P_{{\rm{atmosphere}}} = \frac{{\rho v_{{\rm{output}}}^{\rm{2}} }}{2} \\ <br /> \\ <br /> \frac{{2\left( {P_{{\rm{input}}} + \frac{{\rho v_{{\rm{input}}}^2 }}{2} - P_{{\rm{atmosphere}}} } \right)}}{\rho } = v_{{\rm{output}}}^{\rm{2}} \\ <br /> \\ <br /> v_{{\rm{output}}}^{} = \sqrt {\frac{{2\left( {P_{{\rm{input}}} + \frac{{\rho v_{{\rm{input}}}^2 }}{2} - P_{{\rm{atmosphere}}} } \right)}}{\rho }} \\ <br /> \\ <br /> v_{{\rm{output}}}^{} = \sqrt {\frac{{2\left( {1.31 \times 10^5 \,{\rm{Pa}} + \frac{{\left( {1000\frac{{{\rm{kg}}}}{{{\rm{m}}^{\rm{3}} }}} \right)\left( {3.00\,{\rm{m/s}}^{\rm{2}} } \right)}}{2} - 101.325 \times 10^3 \,{\rm{Pa}}} \right)}}{{\left( {1000\frac{{{\rm{kg}}}}{{{\rm{m}}^{\rm{3}} }}} \right)}}} = 5.58{\rm{ m/s}} \\ <br /> \end{array}<br />
\begin{array}{l}<br /> A_1 v_1 = A_2 v_2 \\ <br /> \\ <br /> \frac{{A_1 }}{{A_2 }} = \frac{{v_2 }}{{v_1 }} = \frac{{3.00\;{\rm{m/s}}}}{{{\rm{5}}{\rm{.58}}\,{\rm{m/s}}}} = 0.5376 \\ <br /> \end{array}