Finding m for Solution of Differential Equation y = e^{mx}

KillerZ
Messages
116
Reaction score
0

Homework Statement



Find the values of m so that the function y = e^{mx} is a solution of the given differential equation.

Homework Equations



y = e^{mx}
5y^{'} = 2y

The Attempt at a Solution



I am not sure if this is right:

y^{'} = me^{mx}

5y^{'} = 5me^{mx}
2y = 2e^{mx}

2e^{mx} = 5me^{mx}

2 = 5m

m = 2/5
 
Physics news on Phys.org
Check it and see. You've already done all the hard work, and checking is a simple matter of seeing whether y = e2x/5 satisfies your differential equation.
 
Ok, Thank you.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top