Finding Maximum Number of Interference Maxima?

Click For Summary

Homework Help Overview

The problem involves determining the maximum number of interference maxima that can be observed when light of a specific wavelength passes through two narrow slits separated by a given distance. The context is rooted in wave optics, particularly interference patterns created by double slits.

Discussion Character

  • Exploratory, Assumption checking, Problem interpretation

Approaches and Questions Raised

  • Participants discuss the maximum angle for diffraction and its implications for calculating maxima. There is an exploration of the equations related to interference, including the use of dsinθ = mλ and considerations of integer values for m. Questions arise regarding the interpretation of results and whether to include the central maximum in the count.

Discussion Status

Participants are actively engaging with the problem, questioning the assumptions about maximum angles and the nature of the maxima. Some guidance has been offered regarding the integer nature of m and the inclusion of the central maximum, but no consensus has been reached on the final count of maxima.

Contextual Notes

There is a lack of information regarding the distance to the screen, which may affect the interpretation of the problem. Participants are also navigating the implications of diffraction minima on the observed maxima.

hrf2
Messages
5
Reaction score
0

Homework Statement


Light of wavelength λ = 535 nm shines through two narrow slits which are 670 μm apart. What is the maximum number of interference maxima which could conceivably be observed (assuming that diffraction minima do not extinguish them and the screen is arbitrarily large)?Your answer should be an integer. There is no sig-fig requirement for your answer

  1. Hint: What is the maximum angle allowed? Did you remember to count the maxima below the center?

Homework Equations


When I tried to answer the first time, the question gave me the a hint to look for the max angle allowed, so I think I'll need to use
dsinθ = mλ, where d=slit distance = 670 μm = 6.7 x 10-7m and λ=535nm = 5.35 x 10-7m
I also think I'll need y=mdL/λ, where y=distance between maxima, m= maxima integer, d=slit distance, L=distance between slits and screen (not given) and λ= wavelength, so maybe not this equation (because L isn't given?)
I thought about using wsinθ=mλ (where w=slit width), but because the question states to assume diffraction minima do not extinguish the maxima, I didn't think it was necessary to factor this in as well.

The Attempt at a Solution


Honestly I'm not even sure where to begin with this. I tried solving for the maximum angle as the question gave me feedback, and I got 52.98°. But I don't know if this is even relevant or what. For an earlier question I did m= d/λ and got the correct answer, but for some reason this does not work here.

Thanks in advance for any help!
 
Physics news on Phys.org
What can be the diffraction angle maximum ? Can it exceed 90°?
 
  • Like
Likes   Reactions: hrf2
If it's 90°, wouldn't the equation be dsin(90°) = mλ? And sin(90°) = 1
Rearranging for m: m=d/λ= (6.7 x 10-7m)/(5.35 x 10-7m) = 1.26. Is this the number of maxima produced? Or just for one side of the central maxima?
So I multiplied by 2 (for either side) and got 2, but that's wrong. So I'm getting confused somewhere.
 
hrf2 said:
If it's 90°, wouldn't the equation be dsin(90°) = mλ? And sin(90°) = 1
Rearranging for m: m=d/λ= (6.7 x 10-7m)/(5.35 x 10-7m) = 1.26. Is this the number of maxima produced? Or just for one side of the central maxima?
So I multiplied by 2 (for either side) and got 2, but that's wrong. So I'm getting confused somewhere.
Yes, m would be 1,26, but it must be integer. You need to tale the integer part. It is 1, so the orders of ±1 are observed, one maximum at both sides of the central maximum. The question was What is the maximum number of interference maxima which could conceivably be observed? . You observe the central maximum, too.
 
Last edited:

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
5
Views
2K
Replies
6
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
7K
Replies
3
Views
3K