- #1

DarkOtaku

- 1

- 0

**A 50.0 kg chair initially at rest on a horizontal floor requires a 365 N horizontal force to set it in motion. Once the chair is in motion a 327 N horizontal force keeps it moving at a constant velocity. Find the coefficient of friction between the chair and the floor. (In this problem use the "327 N" force, but just remember, because of static friction, it always takes a little bit**

__greater__of a force to "Get" an object moving.)

F_{F}=[tex]\mu[/tex]F_{N}

- [tex]\Sigma[/tex]F
_{v}=F_{N}+(F_{g})=ma

F_{N}=F_{g}=mg

- [tex]\Sigma[/tex]F
_{h}=F_{push}+(-F_{F})=ma

[tex]\Sigma[/tex]F_{h}=F_{F}=ma

F_{F}=[tex]\mu[/tex]mg

**F**

[tex]\mu[/tex]=F

[tex]\mu[/tex]=327 N[tex]/[/tex]365 N=0.896 N

_{F}=[tex]\mu[/tex]F_{N}[tex]\mu[/tex]=F

_{F}[tex]/[/tex]F_{N}[tex]\mu[/tex]=327 N[tex]/[/tex]365 N=0.896 N