Finding the coefficient of kinetic friction

AI Thread Summary
To find the coefficient of kinetic friction for a 3.40 kg block pushed with an 85.0 N force at a 55.0° angle, the equations of motion must account for both horizontal and vertical forces. The applied force's components, F cos θ and F sin θ, interact with the normal force and kinetic friction. The initial calculations neglected the gravitational force acting on the block, leading to an incorrect coefficient of kinetic friction. After correcting for gravity, the accurate coefficient is determined to be approximately 0.781. Properly including all forces is crucial for accurate results in physics problems.
riseofphoenix
Messages
294
Reaction score
2
A 3.40 kg block is pushed along the ceiling with a constant applied force of 85.0 N that acts at an angle of 55.0° with the horizontal, as in the figure below. The block accelerates to the right at 6.00 m/s2. Determine the coefficient of kinetic friction between block and ceiling.

p4-60.gif



Ugghhh so... this is what I did...

F = 85.0 N
m = 3.40 kg
a = 6.00 m/s2
fk = μkn

1) Forces in the x-direction:
F cos θ
fk (kinetic friction)

Forces in the y-direction:
F sin θ
n (normal force)

2) Sum of forces

ƩFx = F cos θ + fk = 0
ƩFy = F sin θ + n = 0
ƩFy = F sin θ + n = 0
ƩFy = n = -F sin θ

3) ƩFx = F cos θ + μkn = 0
3) ƩFx = F cos θ + μk(-F sin θ) = 0
3) ƩFx = F cos θ + μk(-F sin θ) = 0
3) ƩFx = 85 cos 55 - μk(85 sin 55) = 0
3) ƩFx = 85 cos 55 = μk(85 sin 55)
3) ƩFx = (85 cos 55)/(85 sin 55) = μk
3) ƩFx = 0.700 = μk

So I got this wrong, the answer is actually 0.781 (?)

I don't know what to do!
 
Physics news on Phys.org
You forgot a force.
 
You have only considered the upward force that is applied to the block and the normal force that the wall exerts downward on the block. You forgot to include the force of gravity in the equation.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top