Finding the magnitude (length) and direction (angle) of a vector

AI Thread Summary
The magnitude of the vector was calculated as √5 using the Pythagorean theorem. The angle was determined using the inverse tangent function, yielding 63.8 degrees. However, there was confusion regarding the angle's representation on the graph, leading to a subtraction of 180 degrees to arrive at -116.6 degrees. Responses indicated that the initial angle calculation was incorrect, and adjustments using the correct quadrant were suggested. The discussion emphasizes the importance of accurately determining the angle based on the vector's direction.
Ineedhelpwithphysics
Messages
43
Reaction score
7
Homework Statement
In the Picture
Relevant Equations
Pythagoras theorem, inverse tan function
1697566568581.png

So i found the magnitude which is
(-1)^2 + (-2)^2 = P^2 =
Sqrt(5)

Then I used the inverse tan function to find the angle (direction)
theta = arctan (-2/-1) = 63.8 degrees

Im confused with my 63.8 degrees since the angle in the graph looks greater than 63.4 degrees

I subtracted 180 by 63.8 and got 116.6

Since it's going clock wise it's -116.6

Am i right?
 
Physics news on Phys.org
Ineedhelpwithphysics said:
Homework Statement: In the Picture
Relevant Equations: Pythagoras theorem, inverse tan function

View attachment 333724
So i found the magnitude which is
(-1)^2 + (-2)^2 = P^2 =
Sqrt(5)

Then I used the inverse tan function to find the angle (direction)
theta = arctan (-2/-1) = 63.8 degrees

Im confused with my 63.8 degrees since the angle in the graph looks greater than 63.4 degrees

I subtracted 180 by 63.8 and got 116.6

Since it's going clock wise it's -116.6

Am i right?
You are not right. Remember ##~\text{tan} =\dfrac{\text{opposite}}{\text{adjacent}}.##
 
Ineedhelpwithphysics said:
Homework Statement: In the Picture
Relevant Equations: Pythagoras theorem, inverse tan function

View attachment 333724
So i found the magnitude which is
(-1)^2 + (-2)^2 = P^2 =
Sqrt(5)

Then I used the inverse tan function to find the angle (direction)
theta = arctan (-2/-1) = 63.8 degrees

Im confused with my 63.8 degrees since the angle in the graph looks greater than 63.4 degrees

I subtracted 180 by 63.8 and got 116.6

Since it's going clock wise it's -116.6

Am i right?

Hi,
1698138797220.png

In your case, + or - π will give you the right answer ;)
 

Attachments

  • 1698138521223.png
    1698138521223.png
    6 KB · Views: 126
  • 1698138675768.png
    1698138675768.png
    6.8 KB · Views: 102
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top