Finding the Work Done in a Monatomic Ideal Gas Process

AI Thread Summary
The discussion revolves around calculating various thermodynamic properties of a monatomic ideal gas undergoing a reversible cycle, specifically focusing on an adiabatic expansion process. Key calculations include determining the pressure, work done, and internal energy changes, with the user expressing confusion over the integration required for accurate work calculation between states. It is clarified that the work done from state c to a cannot be treated as a rectangle, as it requires integration to find the area under the curve. The user is advised to apply the relationship between temperature and volume to find changes in temperature and work accurately. The conversation highlights the complexities of thermodynamic processes and the importance of proper integration in calculations.
Poulsen8r
Messages
2
Reaction score
0

Homework Statement


Hi, this question is from Fundamentals of Physics 8th Edition:
Figure 20-27 shows a reversible cycle through which 1.00 mole of a monatomic ideal gas is taken. Process bc is an adiabatic expansion, with pb = 5.20 atm and Vb = 4.80 x 10-3 m3. For the cycle, find (a) the energy added to the gas as heat, (b) the energy leaving the gas as heat, (c) the net work done by the gas, and (d) the efficiency of the cycle.

(Figure is Attached)

Homework Equations



PiVi^(Gamma)=PfVf^(Gamma)
W=P(delta)V
PV=nRT
PV^(Gamma)=nRTV^(Gamma-1)
(Delta)U=Q-W
Q=nCp(Delta)T
(Gamma)= 1.67 for monoatomic gas
Eint=(3/2)nRT

The Attempt at a Solution


This may look a little weird because of the subscript and powers but i'll give it a go:
Calculating Pressure at (a) and (c):
PiVi^(Gamma)=PfVf^(Gamma)
5.2689e5*4.8e-3=Pf*38.4e-3
Pf=1.6352e4 Pascals

Calculating Work from c to a:
W=P(delta)V
=1.6352e4*(38.4-4.8)e-3
=549.4272J

I believe this is correct...

Calculating temperature at (b) and (c):
T=(PV^(Gamma))/(nRV^(Gamma-1))

Tb=((5.2689e5)*(4.8e-3)^1.67)/(1*8.314*(4.8e-3)^(-0.67))
=304.1944K

Tc=((1.6352e4)*(38.4e-3)^1.67)/(1*8.314*(38.4e-3)^(-0.67))
=75.5233K

Calculating (Delta)Eint for process b to c:
(Delta)Eint=nRTf-nRTi
=nRTc-nRTb
=(1*8.324*75.5233)-(1*8.314*304.1944)
=-2851.757J --> I think this is where the problem lies.

Calculating work for process b to c:
(Delta)Eint=Q-W, as it is adiabatic Q=0 therefore (Delta)Eint=-W.
W=2851.757J

As there is no work for the process a to b, this means that the net work done on the system is 3401.18J... Which is incorrect... I don't know the solution but i know that that answer is wrong... I tried a few other methods than the one above but i get the same answer and i am going crazy and in circles...
 

Attachments

  • fig20_27.gif
    fig20_27.gif
    2.2 KB · Views: 897
Physics news on Phys.org
Poulsen8r said:
Calculating Work from c to a:
W=P(delta)V
=1.6352e4*(38.4-4.8)e-3
=549.4272J
You can't do it this way. You have to integrate to find the area under the curve from c to a. It is not a rectangle.

Use:

TV^{\gamma - 1} = K to find the change in temperature from c to a. Since there is no added heat, you know that W = -\Delta U = -nCv\Delta T

AM
 
Andrew Mason said:
You can't do it this way. You have to integrate to find the area under the curve from c to a. It is not a rectangle.

Use:

TV^{\gamma - 1} = K to find the change in temperature from c to a. Since there is no added heat, you know that W = -\Delta U = -nCv\Delta T

AM

But why is the work done from c to a not a rectangle? i mean Work is the area under the graph which for the line c to a is a rectangle. And how can we apply the Constant volume formulas when its not at a constant volume? Also how do we know there's no added heat?
 
Last edited:
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top